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ABSTRACT
Tremendous effort has gone into the ongoing battle to make
webpages load faster. This effort has culminated in new pro-
tocols (QUIC, SPDY, and HTTP/2) as well as novel content
delivery mechanisms. In addition, companies like Google
and SpeedCurve investigated how to measure “page load
time” (PLT) in a way that captures human perception. In this
paper we present Eyeorg [12], a platform for crowdsourc-
ing web quality of experience measurements. Eyeorg over-
comes the scaling and automation challenges of recruiting
users and collecting consistent user-perceived quality mea-
surements. We validate Eyeorg’s capabilities via a set of
100 trusted participants. Next, we showcase its functionali-
ties via three measurement campaigns, each involving 1,000
paid participants, to 1) study the quality of several PLT met-
rics, 2) compare HTTP/1.1 and HTTP/2 performance, and
3) assess the impact of online advertisements and ad block-
ers on user experience. We find that commonly used, and
even novel and sophisticated PLT metrics fail to represent
actual human perception of PLT, that the performance gains
from HTTP/2 are imperceivable in some circumstances, and
that not all ad blockers are created equal.

CCS Concepts
•Human-centered computing→Web-based interaction;
•Networks → Application layer protocols; Network mea-
surement;
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1. INTRODUCTION
Improving Quality of Experience (QoE) on the Web re-

mains a hot topic. One obvious aspect of QoE, page load
time (PLT), heavily impacts revenue for web-based compa-
nies [2]. It is no surprise, then, that there are many recent ef-
forts to decrease PLT from both industry (e.g., QUIC, SPDY,
and HTTP/2) and academia [10, 17, 24]. To evaluate the
effectiveness of such techniques, we need quantitative mea-
sures of their impact on QoE. Unfortunately, this is difficult
because QoE is hard to define and even harder to measure.

Perhaps surprisingly, this is true even for PLT, which seems
straightforward to define and measure. The typical PLT met-
ric, the browser’s “onload” event, denotes when “all of the
objects in the document are in the DOM, and all the images,
scripts, links and sub-frames have finished loading” [1]. On-
Load is not a perfect proxy for user-perceived page load time
(UserPerceivedPLT) for two reasons: first, the user may only
care how quickly the visible portion of the content loads
(“above-the-fold” render time), meaning OnLoad might be
an overestimate. Second, scripts might continue loading ob-
jects after OnLoad fires, in which case it may be an underes-
timate. To address this problem, new PLT metrics attempt to
bridge the gap between OnLoad and UserPerceivedPLT. For
example, SpeedIndex1 defines PLT as the average time at
which above-the-fold content is displayed. Unfortunately,
even this is not perfect: the user may consider the page
ready to interact with even before some above-the-fold con-
tent (e.g., ads) loads.

Ideally, we want a direct assessment of a user’s experi-
ence on a webpage. This is difficult for the following rea-
sons. First, a large number of people need to be recruited
and surveyed. Second, participants need to be shown con-
sistent views of a page loading. Third, we need to design
experiments that lead to quantitative results about a tech-
nique’s impact on QoE. In some studies [5, 6], participants
are shown a page load in person in a controlled environment
and give qualitative feedback to interviewers. Clearly, this
approach neither scales nor yields quantitative results.

1https://sites.google.com/a/webpagetest.org/docs/using-
webpagetest/metrics/speed-index



(a) Timeline of UserPerceivedPLT responses.

(b) Some sites exhibit multiple modes; here, some participants con-
sider the site “ready” before the ads load.

Figure 1: Exploring responses with Eyeorg’s visualiza-
tion tools.

We take a different approach with Eyeorg, a system for
crowdsourcing Web QoE measurements. Eyeorg allows re-
searchers to test the impact of changes to how a page is struc-
tured or delivered. Eyeorg uses crowdsourced participants
to scale (we currently integrate with two popular services,
Microworkers and CrowdFlower); it shows videos of pages
loading to provide a consistent experience to all participants,
regardless of their network connections and device configu-
rations; and its surveys are designed to provide quantifiable
feedback (e.g., participants are asked to pick the point on
a timeline when they consider a page loaded). With this
approach, we maintain full control of experimental condi-
tions and we can recruit any participant with a modern web
browser, without requiring special hardware or software.

We present two kinds of results. First, we validate that
Eyeorg can produce good quality results; to do so, we re-
cruit 100 trusted participants and compare the quality of
their answers with those of 100 paid participants. We find
that we can reliably identify unreliable participants, flagging
about 20% of the participants in our experiments as “low

performers” whose results should be discarded. The speed
with which crowdsourced participants can be recruited out-
weighs this overhead (e.g., 1 hour rather than 10 days in this
specific experiment).

Next, we use Eyeorg to 1) study how people perceive
PLT, 2) compare HTTP/1.1 and HTTP/2 performance, and 3)
compare the QoE impact of three popular ad blockers: Ad-
Block, Ghostery and uBlock. For each measurement “cam-
paign,” we recruited 1,000 paid participants to which we
showed 5,000 page load videos (selected from 100 sites).
Each campaign required 1.5 days to hit the 1,000 partici-
pants target. Our analysis shows that people find the HTTP/2
version of a website faster and that Ghostery outperforms its
competitors. We also show that existing PLT metrics only
partially match participants responses.

To help understand the PLT data, we built a visualization
tool that displays the UserPerceivedPLT responses as a time-
line next to the video, as shown in Figure 1(a). Using this
tool, we uncovered patterns in responses; for example, many
videos have two modes, one for participants who consider
the pages “ready” when the primary content is in place and
one for those who wait for auxiliary content like ads (Fig-
ure 1(b)). The user-perceived PLT data we crowdsourced
from 1,000 people is available at [12].

2. RELATED WORK

2.1 Latency and Human Perception
Bouch, Kuchinsky, and Bhatti performed one of the earli-

est in-depth studies to understand user perceptions and web
page load time [9]. They approached the problem from an
HCI perspective by designing a controlled experiment where
a small (N = 30) set of users were given an e-commerce
related task to perform on the web. They artificially intro-
duced delay for each of the pages that the task required visit-
ing and asked users to respond with a qualitative assessment
(“high”, “average” , “low”, and “unacceptable”) of page per-
formance. While they had many interesting findings, the
one most relevant to Eyeorg was that a mapping between
subjective and objective PLT measurements was possible.
Eyeorg takes the next step by greatly increasing the scale
of responses as well as being a more general platform for
conducting experiments.

Arapakis, Bai, and Cambazoglu investigated the impact
of search engine response latency and user behavior in [5].
Although their work was focused primarily on how latency
affects user interaction and behavior for search engines, they
provide some insight into how user perceived page load times
might be measured. In particular, in controlled experiments
in a laboratory environment they asked participants to give
an estimation of how long a page took to load. They found
that although individual responses did not match the con-
trolled ground truth, the average of the estimates was quite
close to the real values. Although they used relatively coarse
grained latency intervals (250 ms steps), their results indi-



cate that aggregating human responses is a reasonable way
to measure UserPerceivedPLT.

Egger et al. [11] investigate the relationship between user
perceived PLT and “application” PLT.2 To do so, they ask
participants to mark the time at which they considered a page
loaded. The outcome of their study is that user-perceived
PLT largely departs from application PLT: in most cases,
users perceived a page as loading substantially faster than
the application-reported PLT. Their methodology differs sig-
nificantly from ours, however. In their study, participants
browsed five different pages while link bandwidth and de-
lay were manipulated. In contrast, we show video captures
of pages loading to thousands of study participants which
might have subtle effects on their responses. For example,
our participants are able to precisely pinpoint the frame that
they feel a page has loaded, fine-tuning their choice until
satisfied. We also measure a binary “which is faster” choice,
which was not explored at all in [11].

2.2 Page Load Time
While the research community has focused on understand-

ing the consequences of, and how to improve, page load
time, it seems that understanding how to measure it is a
mostly overlooked problem. The greater “web community,”
instead, has invested a lot into figuring out how to tell how
fast their pages are being delivered to users. These efforts
range from blog posts discussing how to measure PLT [21],
to ebooks explaining how to make your page load faster [22],
to repositories of tools for measuring performance [15], to
full on commercial measurement offerings [16]. Even though
there are serious business consequences associated with page
performance, unfortunately, there is little science behind most
of these efforts.

Regardless, it is worth exploring the efforts made in a bit
more detail. SpeedCurve [16] is a comprehensive suite of
tools for web developers to gain a deeper understanding into
page performance. They provide instrumentation that ex-
tracts some of the metrics we use in this paper in addition
to allowing the definition of custom metrics. One interest-
ing feature is that they provide developers a head-to-head
benchmark comparing the developer’s site with other, simi-
lar sites. Ultimately, however, SpeedCurve blindly PLT met-
rics without any scientific justification that they are meaning-
ful. Determining the validity of computer-generated metrics
is a primary goal of Eyeorg.

In the scholarly community, “onload” has been the de
facto PLT metric (e.g., [10, 17, 24])—until recently. Bocchi,
De Cicco, and Rossi performed a preliminary study compar-
ing different page load metrics [8]. They focused on evaluat-
ing two proposed metrics that are similar to SpeedIndex but
are computationally less expensive. Their most salient result
is that correlating these metrics with real human perception
is incredibly difficult, which is what Eyeorg tries to address.

2To the best of our knowledge, this is the browser reported “on-
Load” time.

Nikravesh et al. [18] measured web performance from
80 crowdsourced mobile devices using their library Mobi-
lyzer. They found a large degree of variability between PLT
and what they call the “page interaction time” (similar to
SpeedIndex). The SpeedPerception3 project has adopted a
methodology similar to Eyeorg’s; in particular the idea of
a human supplied response to a “head-to-head” matchup of
page performance. At the time of this writing, there are a
few significant implementation differences: 1) SpeedPercep-
tion’s A/B tests4 ask users to provide a decision on two dif-
ferent sites and 2) the way that SpeedPerception implements
A/B tests differs from Eyeorg’s (§3.2).

3. EYEORG
Eyeorg [12] is a platform for crowdsourcing web qual-

ity of experience measurements; the goal of Eyeorg is to
measure improvements to user experience on the web. Both
research and industry have expended great effort exploring
different techniques for building and delivering web pages.
Popular examples are content optimization techniques like
“inlining” (putting CSS styles and JavaScript code directly
in HTML) and “spriting” (putting collection of images in a
single image). More far-fetched solutions are shandian [26],
klotski [10], and polaris [17] which aim at optimizing con-
tent delivery based on how it gets displayed from a browser.

To understand when and how to use these techniques, we
need to be able to measure their impact. Doing this in an
automated and quantitative way is hard. First, “quality of
experience” is amorphous and ill-defined—it is not obvious
what to measure, let alone how. Second, even aspects of Web
experience that seem straightforward, like PLT, are difficult
for machines to measure: ultimately, how humans perceive
performance is what matters.

Eyeorg takes a new approach to quantifying quality of ex-
perience by allowing experimenters to directly test the im-
pact of web page design or delivery techniques on real users
in a controlled fashion at large scale. Experimenters can use
Eyeorg to answer questions like, “Does changing the order
in which objects load impact UserPerceivedPLT”, “Does the
presence of advertisements on a page negatively impact user
experience?”, or “Which demographics are more sensitive to
PLT speedup?”.

Experimenters can use Eyeorg to draw responses from
various classes of users, such as invited participants (e.g.,
friends or colleagues), paid crowdsourced workers, or gen-
eral visitors to the Eyeorg site. Eyeorg provides tools to de-
sign experiments, recruit users, filter low-quality responses,
and visualize results. The rationale behind Eyeorg is that
computer generated PLT metrics only partially capture how
people perceive the web. The human perception data gath-
ered by Eyeorg can be used to augment and evaluate computer-
generated PLT metrics.

3http://speedperception.meteorapp.com/
4SpeedPerception currently only supports A/B tests.



Drag the slider to scrub 
through the video until the 
page appears “ready to use.”

(a) Timeline Test. Participants “scrub” the slider to the point
where they consider the page “ready to use.”

Play the 
videos.

Select which video (“Left” 
or “Right”) loaded faster or 
choose “No Difference.”
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(b) A/B Test. Participants watch side-by-side page load videos and
indicate which load is faster.

Figure 2: Eyeorg’s experiment types.

In the remainder of this section we describe the design
and rationale behind Eyeorg. In particular, we discuss how
we address the following three challenges:

1. How do we present page loads to participants? (§3.1)
Variations in load time caused by a particular partic-
ipant’s device or network could mask variations due
to the technique being tested. Furthermore, experi-
menters might want to test the impact of protocols or
browser extensions that participants’ browsers do not
support.

2. How do we ask questions about quality of experi-
ence (and get quantitative answers)? (§3.2) For
example, how can participants indicate to us when a
page “seems loaded” (particularly non-technical par-
ticipants)?

3. How do we get lots of trustworthy responses? (§3.3)
Drawing meaningful conclusions requires a large sam-
ple size; at the same time, recruiting participants not
invested in the experiments could yield careless, sloppy
responses.

3.1 Providing a Controlled Experience
Apart from the engineering challenge to build Eyeorg, a

more fundamental challenge lies in dealing with real peo-
ple. Testing participants’ reactions to a web experience “in
the wild” and at scale is difficult for several reasons. First,
differences between participants’ browsers could impact re-
sults. Second, in many cases the outcome we want to test
(like PLT) is dependent on network conditions, but we have
no control over the quality of participants’ network access.
Third, experimenters may want to test the impact of proto-
cols (e.g., HTTP/2 or SPDY) that some participants’ browsers
may not support, or browser extensions (e.g., AdBlockers)
that some participants may not have installed. In short, we
want to guarantee the same experience for each participant.

To ensure that all participants base their responses on iden-
tical experiences, Eyeorg uses video. This allows us to fully
control what participants see—we pick the browser, network
conditions, protocols, and plugins—regardless of individual
participants’ configurations.

We built a tool, webpeg, to record videos of web pages
loading. Pages are loaded with Chrome because: 1) unlike
headless browsers like PhantomJS5, Chrome provides rapid
(and optimized) support for new technologies like SPDY and
HTTP/2 and 2) Chrome offers better support for instrumen-
tation than Firefox or Safari. We use Xvfb6 (the X virtual
frame buffer) so we can run webpeg on machines without
displays (e.g., EC2 instances) and we capture videos in the
webm format7 (which offers small file sizes) using ffmpeg.8

We designed webpeg to be highly customizable. We use
Chrome’s command line options to control things like pro-
tocol (HTTP/1.1 or HTTP/2) and appearance (kiosk mode)
and Chrome’s remote debugging protocol9 to enable device
and network emulation. The remote debugging interface
also gives us detailed information about the page load (as
an HTTP Archive, or HAR), including when each object
loaded, which protocol was used, and when the onload event
fired. An alternative to using Chrome’s remote debugging
interface would have been to use the Navigation Timing API.10

However, the Navigation Timing API is designed to be ac-
cessed by web “applications” themselves via JavaScript. To
avoid any impact our methodology might have on perfor-
mance, we thus chose to use the asynchronous debugging
protocol. In the future, we will explore performant uses of
the NT API when expanding Eyeorg to other browsers. Fi-

5http://phantomjs.org/
6https://www.x.org/archive/X11R7.7/doc/man/man1/Xvfb.1.xhtml
7https://www.webmproject.org/
8https://ffmpeg.org/
9https://developer.chrome.com/devtools/docs/debugger-protocol

10https://developer.mozilla.org/en-US/docs/Web/API/Navigation_
timing_API



(a) Standard frame selection helper. (b) Control frame selection helper.

Figure 3: Frame selection helper. Eyeorg helps participants adjust their selected PLT by giving them the option to choose the
earliest visually similar frame to the one they chose (left). To ensure participants do not blindly accept the “rewind” frame, as
a control we occasionally show a drastically different frame (right).

nally, webpeg directly modifies Chrome’s preference file to
enable/disable extensions and turn off distracting messages
like “Would you like to translate this page?”.

To capture videos, the experimenter supplies a list of URLs,
how many loads to perform per site, and how many sec-
onds to record after onload (since there is no automatic way
for webpeg to know when the page has finished loading—if
there were, Eyeorg would be unnecessary!). A fresh browser
state is ensured by deleting Chrome’s local state after each
load. As in [23], before testing a new website, an initial
“primer” load is performed. The primer ensures that all
needed DNS records are cached at the ISP’s DNS resolver
before the first real trial (to prevent a cache miss from skew-
ing the load time results). Local content and DNS caches
are disabled and each request carries a cache-control header
instructing network caches not to respond.

3.2 Designing Experiments with Eyeorg
Despite its subjective nature, we would like to run quanti-

tative experiments measuring how QoE is impacted by var-
ious content or delivery optimizations. To demonstrate how
Eyeorg can be used to do this, we picked one aspect of user
experience, page load time, and designed two initial types of
experiments to study it: timeline and A/B.

Timeline In a timeline experiment, we present the partic-
ipant with a page load video and ask them to choose the
point when they consider the page “ready to use.” The naive
way to design this test is to let the participant play the video
and ask them to pause it when the page is loaded; however,
since they may not be familiar with the page, they will likely
wait until they are sure no more content will load, overshoot-
ing and pausing too late. Instead, we disable the standard

HTML5 video controls and present participants with a slider
they use to “scrub” through the video (Figure 2(a)). Even
with the slider, in early tests we observed that (both trusted
and paid) participants still overshot, choosing times well be-
yond onload. We suspect this is due to a combination of two
reasons. First, browsers often only preload a small portion of
the video at a time, so when participants seek quickly, they
may see a blank screen and assume the page in the video
has not loaded yet, when in reality the video has not loaded
yet. By the time the video catches up, they have overshot.
To address this, for timeline tests we force the browser to
preload the entire video before the test begins, only then en-
abling the slider. Second, to correct for simple sloppiness,
we add one final step: after the participant chooses a time,
we show them the frame they chose and the earliest similar
frame (no more than 1% different in a pixel-by-pixel com-
parison (Figure 3(a)). The participant can either accept our
“rewind frame” or stick with their original choice.

We use timeline tests to compare participants’ perceived
load time with other metrics like onload and SpeedIndex.
Since these metrics are frequently used to evaluate techniques
for improving PLT, it is important to understand how closely
they match user-perceived load time. Our tests use page load
videos for a sample of 100 of the Alexa top 1M sites that
fully support HTTP/2 [3]. For each experiment configura-
tion, we repeat each load five times and use the video with
the median onload time. Results are described in §5.

A/B The timeline test is tricky; “ready to use” is subjec-
tive and participants are not always sure how to decide what
time to pick. However, for some experiments, it is not im-
portant to choose precisely when a page is loaded; it may be
useful simply to indicate which of two page loads is faster.
For these cases, Eyeorg uses A/B experiments. Participants



watch two page load videos simultaneously and pick which
loaded faster or “No Difference” (see Figure 2(b)). Video
pairs are shown in a random order (i.e., “A” is not always
on the left and “B” is not always on the right). There is
no guarantee that two videos in a browser stay perfectly syn-
chronized; for instance, lost packets might momentarily stall
one video while the other continues playing. To ensure the
videos stay synchronized, we splice them into a single video
file. If playback stalls, both sides are affected equally.

We demonstrate A/B test’s versatility with two experi-
ments: 1) comparing the speed of HTTP/1.1 vs. HTTP/2,
and 2) comparing the impact of ad blockers on PLT. For
HTTP/1.1 vs. HTTP/2, we capture videos of the same 100
websites above while loading over HTTP/1.1 and HTTP/2.
For the ad blocker analysis, we use data from [3] to identify
10,000 websites that display ads. From this list, we sam-
ple 100 websites and make videos of page loads through
Chrome using one of three popular ad block extensions: Ad-
Block, uBlock, and Ghostery. In this case we do not control
the protocol, which means Chrome will default to HTTP/2 if
the target website supports it. For each experiment configu-
ration (e.g., “HTTP/2” or “Ghostery”), we repeat each load
five times and keep the video with the median onload time.
Results are described in §5.

3.3 Crowdsourcing & Response Validation
For large sample sizes, Eyeorg turns to crowdsourcing.

While many crowdsourcing services offer built-in tools for
creating and hosting tests, we chose to build our own in-
frastructure. First, the built-in facilities tend to be limited
and are not flexible enough to implement our timeline and
A/B tests. Second, we did not want to tie Eyeorg to one
particular crowdsourcing service; we wanted the ability to
draw from a larger, more diverse participant pool, includ-
ing those not registered as crowd workers, like friends and
colleagues. Eyeorg currently supports Microworkers11 and
CrowdFlower12 and can easily be extended to integrate with
other platforms.

Using crowdsourced participants poses a challenge: we
need to verify that responses are meaningful, e.g., that paid
participants do not just blindly click through our tests to get
paid (there are indications that workers from well known ser-
vices like Mechanical Turk13 do not always perform as well
as desired [13]).

While there is no standardized methodology to determine
the quality of a crowd worker, we draw on existing research
in the field to detect unreliable responses (using a combina-
tion of test-time mechanisms and after-the-fact filtering).

Hard Rules Participants are given a set of clear instructions
for each test, defining a set of hard rules they must follow
for the system to allow them to complete the test. For exam-
ple, in A/B tests, participants must choose “Left,” “Right,”

11https://microworkers.com
12https://www.crowdflower.com
13https://www.mturk.com/mturk/welcome

or “No Difference” in order to move to the next video. Be-
cause we are interested in human perception, we also use
Google’s “I’m not a robot” service to verify “humanness”
before participants take tests.

Soft Rules These are rules that, while not strictly enforced
by the system, can reflect the conscientiousness of the work-
ers [19]. Eyeorg does not force participants to watch a video
before answering our questions, but failure to do so is a sign
of low quality.

Engagement High quality workers tend to be “active.”
While the total amount of time a worker spends on a task
is a rough indication of the quality of their work [20], it is
not enough. On the one hand, a short time might indicate an
unengaged worker whose only goal is finishing the task as
fast as possible; on the other hand, a long time might be due
to a distracted worker. We track how long participants spend
reading the instructions, how much time they spend on each
video, how many times they play it (if at all), how much
of the video they watch, how often they seek, and whether
they switch to different tabs or windows during a test. We
also capture information about the participant’s system, like
browser, OS, and how large the video was on their screen.

Control Questions A common technique in crowdsourc-
ing experiments is to randomly insert control questions—
questions to which the answer is known [14]. For timeline
tests, we want to verify that participants do not blindly ac-
cept the rewind frame we suggest, so we occasionally sug-
gest a nearly-blank rewind frame (Figure 3(b)) and check
that the participant continues with their original choice. For
A/B tests, we occasionally show two copies of the same
video with one side artificially delayed by three seconds and
check that the participant picks the non-delayed side.

Wisdom of the Crowd A classic problem in crowdsourcing
is the lack of ground truth, meaning the quality of responses
is difficult to evaluate. However, if most participants are rea-
sonably good, ground truth can be built using the average
or majority vote of all responses [25, 7]. Participants whose
responses deviate wildly from this pseudo-ground truth can
be dropped. We also leverage the crowd to improve the sys-
tem: participants can report broken videos; a video flagged
by 5 different workers is automatically banned and manually
inspected by our team.

4. VALIDATING EYEORG’S RESULTS
In this section, we validate the quality of the crowdsourced

responses that Eyeorg collects. We introduce the data sets we
have collected (§4.1) and present an analysis of various tech-
niques for throwing away unreliable responses (§4.2), which
leads us to our final “cleaning” procedure (§4.3).



Type Participants Male/Female Duration Cost # Sites

Validation

PLT timeline Paid 76/24 1 hour $12 20
PLT timeline Trusted 79/21 10 days - 20

H1-H2 A/B Paid 77/23 1 hour $12 20
H1-H2 A/B Trusted 84/16 10 days - 20

Final

PLT timeline Paid 685/315 1.5 days $120 100
H1-H2 A/B Paid 697/303 1.5 days $120 100

ADS A/B Paid 716/284 1.5 days $120 100

Engagement Soft Control

16 2 7
10 - 1
9 5 2
1 2 1

151 45 54
98 56 82

128 34 57

Table 1: Summary of data collected. Engagement, Soft, and Control indicate the number of participants filtered out by the
techniques described in Section 4.3.

4.1 Data Sets
Before exploring methods for detecting low quality work-

ers (§3.3), we define a “pseudo-ground truth” baseline using
responses from a set of trusted participants. We evaluate
the effectiveness of different filtering techniques by compar-
ing filtered paid participant responses against these baseline
trusted participant responses.

To gather the baseline, we ran two small-scale campaigns,
one A/B14 and one timeline, with 20 videos each. For each
campaign, we recruited 100 paid participants on CrowdFlower
and 100 trusted participants via email and social media. On
CrowdFlower, we requested only workers that are “histori-
cally trustworthy,” which comes at the cost of a longer re-
cruitment time. For the trusted participants, we carefully
selected friends and colleagues who promised full commit-
ment to the task. We asked each participant to watch six
videos (i.e., we served 600 videos in total per experiment
and each video has, on average, responses from 30 different
participants).

The top of Table 1 summarizes the validation data set. For
both timeline and A/B campaigns, it took about one hour to
recruit paid participants (cost: $12) compared to 10 days for
the trusted participants (at no cost). Both participant sets ex-
hibit a roughly 75/25% male/female gender split. Paid par-
ticipants are located in 30 countries (Venezuela being the
most popular); trusted participants came from 12 countries
(the U.S. being the most popular).

4.2 Evaluating Filtering Techniques
Based on the high-level techniques presented in §3.3, our

goal is to design a strategy for filtering out low-quality re-
sponses. We validate each technique by comparing paid re-
sponses after filtering to the trusted baseline.

Engagement Figure 4(a) shows the Cumulative Distribu-
tion Function (CDF) of the time (minutes) each participant
spent on Eyeorg broken down both by participant type (paid

14The A/B campaign is HTTP/1.1 vs HTTP/2.

and trusted) and experiment type (timeline and A/B). The
time spent on site is computed as the sum of the time spent
evaluating each video, which in turn is computed as the dif-
ference between the time a response was submitted and the
time the page loaded.

Figure 4(a) shows that, for both experiment types, the
CDFs for paid and trusted participants are quite similar, though
paid participants tend to take slightly longer than trusted par-
ticipants (e.g., the median grows from 2.5 to 3 minutes for
the timeline experiment). This result is counter-intuitive,
as one would expect paid participants to skim through the
videos faster in an attempt to increase their earnings by com-
pleting more tasks. Further analysis indicates that this is the
result of two things: more “out of focus” time (Figure 5)
where Eyeorg is in the background and longer video transfer
times. The figure also suggests that the timeline test requires
more effort than the A/B test; it takes 3x longer on average.
This is primarily because 1) the timeline experiment requires
more interaction with the video (Figure 4(b)) to complete the
task and 2) the timeline experiment requires the video to be
fully loaded before the participant can begin the task (§3.2).

Taking a closer look, Figure 5 shows the CDF of the time
a participant did not have the Eyeorg browser tab in the fore-
ground. We do not plot results for trusted participants in the
A/B experiments since only one participant switched tabs
during that test. For the timeline experiment (paid partici-
pants) we also differentiate by how long the video took to
load (L). Overall, Figure 5 shows that participants tend
to get more distracted the longer the video takes to load—
we see about 10% more distracted users when the video
takes up to 100 seconds to load compared to less than 2 sec-
onds. A/B campaign participants are, overall, as distracted
as timeline campaign participants for whom the video took
less than 2 seconds to play. Since in the A/B campaign par-
ticipants can click play right away and let the video load in
the background, this further indicates that long video pre-
loading time in the timeline campaign is responsible for the
(understandable) engagement drop. In addition, the higher
complexity of the timeline campaign might also have a role,
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Figure 4: Participant behavior. Comparing the behavior of paid and trusted participants.

0.1 1 10 100 1,000
0.8

0.85

0.9

0.95

1

Time out of focus (sec)

C
D

F
 (

0
−

1
)

 

 

Timeline (L<=2 sec)
Timeline (L<=10 sec)
Timeline (L<=100 sec)
A/B−−paid
timeline−−trusted

Figure 5: Out of focus time. L = video load time.

as suggested by 4% of the trusted participants also getting
distracted for several seconds.

Next, we investigate how participants interact with each
video; Figure 4(b) shows the CDF of the total number of
actions (play, pause, and seek), again broken down by par-
ticipant type and experiment type. The figure shows, overall,
very similar CDFs, which indicates that paid and trusted par-
ticipants are more similar in terms of actions performed than
time spent on site. This further confirms the impact of exter-
nal factors, such as long video load times, on the slower re-
sponses from paid participants. This result also shows Eye-
org’s ability to equalize participant feedback despite hetero-
geneous network conditions, which would be impossible if
participants were asked to, for example, navigate to a given
website and provide feedback.

The tail of Figure 4(b) shows two users performing 714
and 724 actions (seek); this is twice as many actions as the
most active trusted participant (369 seek actions). Neverthe-
less, these participants finished in 2 and 4 minutes, respec-
tively, meaning that despite the large number of actions, they
rank in the fastest 15% and fastest 70% of participants over-
all. Such frenetic behavior looks extremely suspicious, but,
from our data, we could not figure out what causes it. We
doubt it it is a realistic human interaction, and we conjecture
a browser extension might have been used.

Soft Rules Though Eyeorg does not enforce it, we set a soft
rule that participants should watch each video before submit-
ting a response (§3). Although hard to see due to log scale,
Figure 4(b) shows that trusted participants always interact
with each video, seeking (timeline) or hitting play (A/B) at
least once. By contrast, 1–2% of the paid participants speed
through the test without interacting with the video at all.

Control Figure 4(c) shows the percentage of correct re-
sponses to control questions. Overall, we notice no major
difference between the two control types (timeline versus
A/B) for both paid and trusted participants, suggesting both
control types were well designed. It is important to note,
however, that paid participants tend to fail control questions
at a higher rate (5%), suggesting that there are some random
clickers. Nevertheless, we found one distracted participant
per campaign in the trusted user-set as well.

Wisdom of the Crowd Finally, we investigate whether we
can use consensus among paid participants as a proxy for
ground truth in the absence of a trusted baseline, starting
with the timeline experiment. To build intuition, Figure 6(a)
shows the CDF of paid participants’ UserPerceivedPLT for
four representative websites. The wisdom of the crowd ef-
fect is clearly visible: the majority of the responses are con-
centrated around one (or a few) UserPerceivedPLT values,
e.g., 6.2 and 9.5 seconds for video-2. We further discuss
sites with multiple modes (like the one shown in Figure 1) in
§6. The figure also shows fairly long heads/tails, indicating
that, while most participants agree, some strongly disagree
with the rest of the crowd. One possible explanation for this
is that these participants simply scroll to the beginning or
end of the video in an attempt to finish the test and get paid
as soon as possible.

We generalize this observation to the entire timeline cam-
paign by using the standard deviation of the UserPerceived-
PLT for each website as a measure of agreement among parti-
cipants—the tighter the distribution, the more in agreement
the responses are. By removing outliers at the ends of each
distribution (e.g., keeping only responses between the 10th
and 90th percentiles of each site’s UserPerceivedPLT distri-
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Figure 6: Wisdom of the crowd. With appropriate filtering, the responses of paid participants demonstrate a consistent
majority opinion; furthermore, paid responses are in line with those of trusted participants.

bution), we arrive at a set of high-quality responses in rela-
tively tight agreement. Figure 6(b) shows CDFs of standard
deviations across all videos in the validation data set. First,
without any filtering, the “Paid All” and “Trusted All” show
wide standard deviations, which comes as no surprise based
on the tails in Figure 6(a)). Second, the gap between the
“Paid All” and “Trusted All” curves demonstrates the over-
all lower quality of the paid participants. Third, as we ap-
ply filtering, we see that the standard deviation of UserPer-
ceivedPLT drops quickly, indicating most participants are in
agreement. Finally, when restricted to responses between the
25th and 75th percentiles, results for paid and trusted partici-
pants are in line, which confirms that the wisdom of the paid
crowd is a reasonable pseudo-ground truth in the absence of
a trusted baseline.

Next, we extend this analysis to the A/B experiment. In
this case, the analysis is simpler as the user input is restricted
to three discrete values—left was faster, right was faster, or
there was no difference—rather than the continuous set of
values for the timeline experiment. Accordingly, Figure 6(c)
shows the CDF of participant “agreement” for each video
for paid and trusted participants. We define agreement as
the fraction of responses matching the most popular answer,
independent of what that answer is. For example, an agree-
ment of 80% indicates that 80% of the votes went to one
choice and the remaining 20% were split, somehow, between
the other two.

Figure 6(c) shows no dramatic difference between trusted
and paid participants in term of overall agreement. Likely,
this is due to the ease of the A/B task compared to the time-
line task, as previously discussed. The figure also shows a
high level of agreement, e.g., more than 85% of participants
converge to the same response for 60% of the videos and 10–
20% of the videos have a 100% agreement. In addition, we
never saw a completely split response (33% agreement)—
the minimum level of agreement in the figure is 45%. Paid
participants tend to agree more than trusted participants. Cou-
pled with a lower rate of “no difference” responses, this
might indicate that trusted participants are more cautious
about their choices.

4.3 Final Filtering Strategy
Based on the analysis above, we arrive at the following

methodology for filtering low-quality responses. Table 1
(last three columns) summarizes the number of participants
dropped per campaign according to the methods below.

Engagement The previous analysis suggests that the time
spent on site (Figure 4(a)) is not a reliable way to filter unen-
gaged participants as it can be impacted by external factors
like network connectivity. Instead, we use the following two
engagement metrics. First, a large number of video interac-
tions (Figure 4(b)) is a good indicator of suspicious activity,
so we introduce a simple rule dropping paid participants with
50% more video interactions than the most active trusted
participant (369 seeks). This filtering is very minor; it ap-
plied to only two paid participants in the validation data-set
and three paid participants15 in the final data-set (§5.1). Sec-
ond, we apply a more aggressive filter based on the amount
of time a participant is distracted, with the caveat that longer
video load times may understandably cause participants to
briefly switch to other tabs. Accordingly, we filter partici-
pants who switch away from the Eyeorg tab for more than
10 seconds so long as the video was delivered within those
10 seconds. Table 1 shows that this removes 10–15% of the
paid participants.

Soft Rules We discard responses from participants who
skipped (i.e., did not play or scrub) even just one video. This
removes 2–5% of both trusted and paid participants (apart
from the trusted timeline campaign, where no participant
broke this rule).

Control We discard participants who failed any control
question. This amounts to 2–8% of participants, with no
consistent trend between campaign types (more timeline par-
ticipants fail the control in the validation set, whereas more
A/B participants fail in the final data set). Only one trusted
participant failed a control question in each campaign, which

15These paid participants managed to perform between 912 and
1931 seek actions in 5 minutes.
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Figure 7: Timeline Results.

gives us confidence our control mechanisms do not introduce
false positives.

Wisdom of the Crowd For timeline campaigns, we only
keep responses between the 25th and 75th percentiles for
each video.

5. PAGE LOAD TIME RESULTS
This section summarizes our findings from using Eyeorg

to study page load time (PLT), an important aspect of QoE.
Specifically, we answer three questions: 1) to what extent do
existing PLT metrics represent user perception, 2) do users
perceive a speed difference between HTTP/1.1 and HTTP/2,
and 3) what impact do ad blockers have on PLT?

5.1 Data Set
To answer these questions, we ran three campaigns, sum-

marized in the Final section in Table 1. Each campaign
consisted of 100 videos and targeted 1,000 paid participants
(again, recruited from CrowdFlower’s “most trustworthy”
pool). Each participant watched six videos, meaning we
served 6,000 videos in total per campaign and each video
has, on average, responses from 60 different participants.

Overall, it took about 1.5 days per campaign to recruit
1,000 participants at a cost of $120. Across all three cam-
paings, 70% of the participants are male and 30% are fe-
male. Participants are located in 76 distinct countries, with
Venezuela being the most popular.

5.2 User Perception and PLT
We compare UserPerceivedPLT against four existing, au-

tomatically computable metrics:

OnLoad refers to the time it takes for the JavaScript “on-
Load” event to fire. This event fires once the page’s embed-
ded resources have been downloaded, but not necessarily be-
fore, e.g., objects loaded via scripts are retrieved. OnLoad is
the simplest and most used metric in practice.

SpeedIndex “is the average time at which visible parts of the
page are displayed” (the average is over all above-the-fold

pixels). Imagine a curve plotting the percentage of pixels
that are “visually complete” (i.e., match their final state) over
time as the page loads; SpeedIndex is the area above this
curve (smaller values better—the load feels faster the more
“up and to the left” the curve is).

FirstVisualChange/LastVisualChange are the times at which
the first pixels are drawn and the last pixels stop changing on
the user’s screen.

Figure 7 summarizes the results from the timeline cam-
paign. For each video, we compute the UserPerceivedPLT
as the mean of the filtered participant responses. To start, we
investigate the impact of the frame selection helper (§3.2).
Figure 7(a) compares participants’ final UserPerceivedPLT
choices (“submitted”) with their original choices (“slider”)
and the one proposed by the frame selection dialog (“frame-
helper”). For visibility, we only show results for the 20
videos used for validation in Section 4. For most videos,
the submitted UserPerceivedPLT matches the value proposed
by the frame selection helper, suggesting that most partici-
pants agree with Eyeorg’s suggestions for fine-tuning their
responses. On average, the submitted UserPerceivedPLT dif-
fers from the original value selected with the slider by 300 ms
and up to a maximum of 1.6 s. In the remainder of the PLT
analysis, we only consider the submitted UserPerceivedPLT
and extend to the full video pool.

Are existing metrics related to UserPerceivedPLT at all?
Figure 7(b) shows how UserPerceivedPLT correlates with
each of the four PLT metrics. OnLoad and FirstVisualChange
highly correlate with UserPerceivedPLT (0.84–0.85), while
SpeedIndex, despite its higher complexity, has a lower cor-
relation with UserPerceivedPLT (0.68). LastVisualChange
provides almost no indication of when participants consider
a page to be loaded (0.47). Though a non negligible number
of responses (7%) exactly match LastVisualChange, most
participants indicate that the pages are “ready enough” to
be used way earlier.
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Figure 8: A/B Results.

Are existing metrics able to predict the value of UserPer-
ceivedPLT? While correlation gives a rough picture of how
each metric relates to UserPerceivedPLT, it is also impor-
tant to show how close the actual values are. Figure 7(c)
shows a CDF of the difference between UserPerceivedPLT
and each PLT metric, i.e., a negative number indicates that
participants selected a time before that metric indicated the
page had loaded. Overall, OnLoad was within 100 ms of the
mean UserPerceivedPLT for 30% of the sites compared to
just 7% for SpeedIndex. Also note that 60% of the UserPer-
ceivedPLT values are smaller than OnLoad—that is, OnLoad
tends to over-estimate. Unsurprisingly, FirstVisualChange
and LastVisualChange under- and over-estimate, respectively.

Can existing metrics at least tell us “which is faster”? Fi-
nally, we quantify how good the existing PLT metrics are at
identifying a difference in load time between two page loads
using data from the HTTP/1.1 vs HTTP/2 A/B campaign.
Intuitively, choosing which site in an A/B test is faster be-
comes easier as the absolute difference between the “true”
load times for A and B (∆) increases. Therefore, we can
use the level of participant agreement as a proxy for ∆—the
more the participants agree, the larger ∆ likely was.

Based on this reasoning, 1) if a PLT metric is good, we
expect to see agreement increase monotonically as the mea-
sured ∆ for that metric increases, and 2) the higher the agree-
ment for a particular ∆-value for a particular metric, the
more confidence we have that when we measure a ∆ of that
size in the future, it represents a meaningful difference in
UserPerceivedPLT. Figure 8(a) shows the median agreement
(as previously defined in §4.2 Figure 4(c)) among partic-
ipants for HTTP/1.1/HTTP/2 video pairs as a function of
each metric’s ∆. Overall, Figure 8(a) shows that as ∆ in-
creases, participants tend to agree more, which matches our
intuition. While there is no clear winner among the PLT
metrics, the figure shows that OnLoad better captures small
loading time differences (∆ ≤ 200 ms) whereas SpeedIndex
and FirstVisualChange do a better job in the medium range
(200 < ∆ ≤ 800 ms). The figure also shows that LastVi-
sualChange and SpeedIndex do not exhibit a monotonic in-
crease in agreement as ∆ grows, meaning that small vari-
ations in LastVisualChange and SpeedIndex measurements
are less significant.

5.3 HTTP/1.1 vs HTTP/2
Do users perceive a speed difference between HTTP/1.1
and HTTP/2? In this section, we examine the responses
from our HTTP/1.1 vs HTTP/2 A/B campaign. Figure 8(b)
shows the CDF of the average “score” per website; 0 means
the HTTP/1.1 version was faster, 0.5 is a “split” decision,
and 1 means the HTTP/2 version was faster. We plot scores
for 1) all websites, 2) websites with similar HTTP/1.1 and
HTTP/2 PLTs (∆ ≤ 100 ms), and 3) websites that loaded
much faster over one protocol than the other (∆ ≥ 800 ms).
To build these subsets, we compute PLT using SpeedIndex.

Figure 8(b) shows that 70% of the websites have an av-
erage score of 0.8 or higher; this means that 70 out of 100
websites “feel” faster using HTTP/2 than HTTP/1.1. Con-
versely, 12% of the websites have an average score of 0.2 or
lower and thus feel faster using HTTP/1.1. The remaining
18% of websites create some disagreement. Note that the
score here does not take into account the “No Difference”
responses. These websites with scores in the 0.2–0.8 range
also have twice as many No Difference responses compared
to the other websites. This further indicates that participants
are just not sure which version was actually faster.

Next, we focus on the subset of websites with similar
PLTs (∆ ≤ 100 ms). The figure shows that participant in-
decision grows, with more scores in the 0.2–0.8 range. This
is to be expected based on the results from Figure 8(a). On
the other hand, when ∆ ≥ 800 ms, participants mostly agree
on which version was faster. This result indicates that, while
aiming at reducing loading time of a webpage is overall ben-
eficial, many users are not able to appreciate the difference
when only few hundred milliseconds are saved.

5.4 Ad Blocker Comparison
How do popular ad blockers impact PLT? We compare
three popular ad blockers, AdBlock, Ghostery, and uBlock.
Figure 8(c) shows the CDF of the average “score” obtained
by each website where 0 means the original version with ads
was faster and 1 means the ad-blocked version was faster.

The figure shows that 30–40% of the websites have scores
in the 0.2–0.8 range, i.e., participants did not agree on which
version was faster. This is about 15% more compared to



when participants were asked to evaluate HTTP/1.1 versus
HTTP/2. Based on feedback collected on Eyeorg, we believe
this is due to the fact that the two versions of the websites
are now not perfectly equal, which makes deciding which
was faster harder. Nevertheless, the figure shows Ghostery
is a clear favorite; for example, for 50% of sites, participants
strongly agreed (≥ 0.8) that the Ghostery version of the page
was faster compared to just 25% for AdBlock and uBlock.

6. DISCUSSION

What Does “Ready” Mean? In our timeline tests, we ask
participants to “drag the slider to the point where you con-
sider the site ‘ready to use.”’ We intentionally left the word-
ing open to individual interpretations of “ready,” since what
humans consider “ready” is exactly what we’re trying to
learn. If, for example, we instructed participants to “pick
the point where content stops changing,” we would simply
be asking them to reproduce LastVisualChange.

To see if participants have consistent definitions of “ready,”
we look at the UserPerceivedPLT distributions for different
sites. Three rough patterns emerge (Figure 9). 1) Some sites
exhibit a single, clear peak in UserPerceivedPLT choices.
After manually inspecting the associated videos, these sites
tend to be characterized by “fast” loads (in the sense that
the span of time between FirstVisualChange and LastVisu-
alChange is very short). These cases are relatively cut-and-
dry; not much is open to interpretation, and participants are
pretty consistent with the times they choose. 2) Some sites
have a much wider distribution. These sites tend to have a
much longer gap between FirstVisualChange and LastVisu-
alChange, giving participants more freedom to choose dif-
ferent “ready” times. 3) Some sites exhibit multiple peaks.
In some cases, this appears to be due to auxiliary content,
like social media widgets and ads—some participants con-
sider the page ready after the main content has loaded, while
others wait for the auxiliary content to load.

Comments we collected from trusted participants help shed
light on this. The first two comments confirm that auxiliary
content does impact some participants’ responses:

“Sometimes my choice may not be ... due to the [or-
der] in which the content loaded. I selected the one
where the main content loaded first, not necessarily
which one finished loading everything [first].”

“Ads/like buttons/etc. usually load last; it’s a little
unclear whether ‘ready to use’ should include those or
not. I start using sites before all of the ads loaded, but
when I do that, I know that the page isn’t totally done
loading—I just don’t care.”

In conjunction with Figure 9 these comments are particu-
larly interesting in light of new features in HTTP/2 like push
and priority that could be exploited to ensure the optimal de-
livery order for specific users (similar to Klotski [10]).

The following two comments echo the first two, but also
point out some limitations of our methodology. First, some
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Figure 9: UserPerceivedPLT Distributions: Sites typically
had one of three types of distributions: single mode and tight
(left column), single mode and spread out (center column),
or multi-modal (right column).

participants’ responses are affected by their familiarity with
a site. They are easily able to identify when the important
content is loaded if the site is familiar (i.e., they will think
the page is loaded “faster”), whereas with an unfamiliar site
they might wait until every piece of content loads. Second,
some participants look for more than just visual cues, e.g.,
when an element on the page becomes responsive to user
input. Eyeorg’s page load videos fail to capture these cues.

“Sometimes how early I feel the site is ready to use
depends on what I want to use the site for. For example,
if I am looking for articles, I don’t care if the ads have
loaded. So usually I consider the webpage ready when
the part I want has loaded. However, there are other
cases, like I don’t know what is on the site, when I
want to wait for everything to load. There is also the
case where the links move when other parts load and
for those cases, I commonly have to wait for the whole
page to load because it’s too easy to click where the
link used to be and click something else instead.”

“It is difficult to say when a site becomes ‘usable’
without knowing whether the search bar is responsive.
For many sites I consider it usable the instant the search
bar becomes responsive.”

Extending Eyeorg In this paper, we only scratched the sur-
face of what can be done with Eyeorg. Many existing fea-
tures of Eyeorg that enable rich experimentation, e.g., (mo-
bile) device and network emulation, have not been discussed
at all. Similarly, although we have provided an extensive
analysis into understanding how humans perceive PLT, we
are fully aware that many open questions remain. We be-
lieve that the community at large can leverage Eyeorg as a



platform to enable high quality, novel research that answers
these and other questions. Eyeorg can be used to measure
the impact of a variety of changes to the web; e.g., TCP vs.
QUIC, TLS 1.2 vs TLS 1.3, HTTP/2 push/priority strate-
gies, web design techniques like domain sharding or image
spriting, browser plugins, or even in-network services like
Google’s Flywheel compression proxy [4].

Data Collection and Privacy Eyeorg collects data from hu-
man participants, so we have to take care we collect and use
this data responsibly. (Note that paid participants may also
provide data directly to the crowdsourcing services Eyeorg
uses; this data is not shared with us and is subject to those
services’ privacy policies.)

We collect three types of data. First, we ask participants to
provide standard demographic information like gender, age,
country, and self-assessed technical ability. We collect this
information at a coarse enough granularity there is no dan-
ger of identifying individual people. Next, we collect activ-
ity data like how long a participant spends reading instruc-
tions, when they play/pause a video, and whether they switch
away from the Eyeorg tab during an experiment. (Note that
we only collect information about the Eyeorg tab; if they
switch away, we have no information about what they do.)
We use this data to filter out uncommitted participants. We
do not use this data to discriminate (e.g., refuse payment)
against participants.Finally, we collect participant responses
to our QoE questions (e.g., “when is this page ready to use”
or “which video is faster”). Clearly this data is needed, as it
is what Eyeorg seeks to measure to begin with.

7. CONCLUSION
This work presented Eyeorg, a platform for crowdsourc-

ing web quality of experience measurements. Eyeorg col-
lects quantitative QoE measurements from real users at scale.
Eyeorg relies on videos to ensure each participant sees a con-
sistent view of the page loading; our video collection tool
control parameters like device type, protocol, network con-
ditions, and more. We validate the responses collected from
crowdsourced workers by comparing them to responses from
a controlled set of 100 trusted users. Next, we conduct three
measurements campaigns involving 1,000 participants each;
our campaigns investigate the quality of existing PLT met-
rics, compare HTTP/1.1 vs HTTP/2 performance, and assess
the impact of online advertisements on user experience. Go-
ing forward, we plan to extend Eyeorg with a broader set of
capabilities for conducting web QoE experiments. In partic-
ular, we plan to make Eyeorg a platform that any researcher
can use to test web content or delivery optimizations easily,
without worrying about the challenges of designing a user
study from scratch.
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