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Abstract. Version 2 of the Hypertext Transfer Protocol (HTTP/2) was finalized
in May 2015 as RFC 7540. It addresses well-known problems with HTTP/1.1
(e.g., head of line blocking and redundant headers) and introduces new features
(e.g., server push and content priority). Though HTTP/2 is designed to be the
future of the web, it remains unclear whether the web will—or should—hop on
board. To shed light on this question, we built a measurement platform that mon-
itors HTTP/2 adoption and performance across the Alexa top 1 million websites
on a daily basis. Our system is live and up-to-date results can be viewed at [1]. In
this paper, we report findings from an 11 month measurement campaign (Novem-
ber 2014 – October 2015). As of October 2015, we find 68,000 websites reporting
HTTP/2 support, of which about 10,000 actually serve content with it. Unsurpris-
ingly, popular sites are quicker to adopt HTTP/2 and 31% of the Alexa top 100
already support it. For the most part, websites do not change as they move from
HTTP/1.1 to HTTP/2; current web development practices like inlining and do-
main sharding are still present. Contrary to previous results, we find that these
practices make HTTP/2 more resilient to losses and jitter. In all, we find that 80%
of websites supporting HTTP/2 experience a decrease in page load time com-
pared with HTTP/1.1 and the decrease grows in mobile networks.

1 Introduction

HTTP/2 (H2 for short) is the new version of HTTP, expected to replace version 1.1 (H1),
which was standardized in 1999. H2 promises to make the web faster and more efficient
by compressing headers, introducing server push, fixing the head of line blocking issue,
and loading page elements in parallel over a single TCP connection (cf. Section 2).
Although the standard does not require encrypting H2 connections with Transport Layer
Security (TLS), the major browser vendors currently only support encrypted H2 [19].

While on paper H2 represents the future of the web, it is unclear whether its adoption
will face a struggle similar to IPv6. As discussed in [5], the adoption of a new protocol
largely depends on the ratio between its benefits and its costs. Modern websites are al-
ready designed to deal with H1’s inefficiencies, employing hacks like spriting, inlining,
and domain sharding [18]. While H2 would remove the need for such hacks, in theory
simplifying web development, given their widespread use it is unclear how much H2
can improve performance over H1. Furthermore, it is unclear how these practices will
affect H2 performance (which is crucial, since web developers cannot rebuild their sites
overnight nor are they likely to maintain two versions until H1 disappears).

Motivated by these uncertainties, in this work we build a measurement platform that
monitors the adoption and performance of H2. Using machines on PlanetLab [3] and in
our labs in Spain and the U.S., we probe the top 1 million Alexa websites each day to



see which support H2. For those that do, we note which features they use and measure
performance with H1 and H2. Results are published daily at [1].

This paper reports findings from an 11-month measurement campaign, from Novem-
ber 2014 until October 2015 (cf. Section 4). As of October 2015, we find 68,000
websites reporting H2 support, of which only 10,000 actually serve website content
over H2. NGINX, a popular web server implementation, currently powers 71.7% of the
working H2 websites, with LiteSpeed following at 13.7% (in contrast to the 98% they
claim1). Our results also show that sites that have deployed H2 have not significantly
altered their content; classic H1 hacks are still used in the H2 version. For example,
inlining (putting CSS styles and JavaScript code directly in HTML) is still widely used,
reducing caching benefits. The same is true of domain sharding (spreading web objects
across multiple domains), causing H2 to use more TCP connections than necessary. In
terms of page load time, for 80% of the websites we measured an average reduction in
page load time of 300 and 560 ms when accessed from a wired connection, respectively
from Europe and the USA, 800 ms from a European 4G connection, and 1.6 seconds
from a European 3G connection. The observed H2 benefits for mobile contradict pre-
vious studies; our analysis suggests that domain sharding, whether intentional or not,
triggers the usage of several TCP connections, making H2 more resilient to losses and
jitter typical of mobile networks.

2 Background and Related Work

H1 is an ASCII protocol that allows a client to request/submit content from/to a server.
H1 is mostly used to fetch web pages, where clients request objects from a server
and the resulting response is serialized over a persistent TCP connection. H1 provides
pipelining to request multiple objects over the same TCP connection, but the benefits
are limited since servers must respond to requests in order. Thus, an early request for a
large object can delay all subsequent pipelined requests (head of line blocking). Clients
mitigate this by opening several concurrent TCP connections to the server, which in-
curs additional overhead (TCP state on the server, TCP handshake latency, and TLS
session setup in the case of HTTPS [13]). Accordingly, browsers limit the number of
simultaneous connections to each domain (e.g., 6 in Chrome and 15 in Firefox [22]).
Web developers have responded to this limitation with domain sharding, where content
is distributed across multiple domains, circumventing the per-domain connection limit.
Finally, H1 requires the explicit transmission of headers on a per request/response basis.
Therefore, common headers (e.g., server version) are retransmitted with each object—
particularly wasteful for pages with many small objects.
SPDY and H2 SPDY is Google’s update to H1. It is binary rather than ASCII, enabling
efficient parsing, lighter network footprint, and reducing susceptibility to security is-
sues caused by unsanitized input strings. SPDY opens a single TCP connection to a
domain and multiplexes requests and responses, called streams, over that connection,
which reduces the number of TCP/TLS handshakes and the CPU load at the server.
SPDY also introduces content priority (clients can load important objects like CSS and
JavaScript earlier), server push (the server can push objects before the client requests
them), and header compression (reduces redundant header transmission). H2 builds on

1 https://www.litespeedtech.com/http2-ready—To their credit, another 27,000 websites powered
by LiteSpeed redirect to an error page that loads over H2.



SPDY, making only relatively small changes. For example, H2 uses HPACK [16] for
header compression, eliminating SPDY vulnerability to the “crime” attack [12].
NPN and ALPN Since SPDY, H1, and H2 all use TLS over port 443, port number
is no longer sufficient to indicate to web servers which application protocol the client
wants to use. The Next Protocol Negotiation (NPN) [4] is a TLS extension developed
by Google as part of its SPDY effort. During the TLS handshake, the server provides a
list of supported application protocols; the client then chooses the protocol to use and
communicates it to the server via an encrypted message. Application Layer Protocol
Negotiation (ALPN) [20] is a revised version of NPN standardized by the IETF. In
ALPN, the client sends which application protocols it supports to the server, ordered by
priority. The server selects the protocol to use based on the protocols it supports and the
client priority; next, it returns the selected protocol to the client via a plain text message.

Related Work Previous work mostly investigate SPDY performance [10][8][11][15];
to the best of our knowledge, [17] is the only work previous to ours focusing on H2. Al-
though the results of these studies are mostly contradictory, they converge on reporting
poor SPDY (and H2) performance on mobile networks.

Erman et al. [7] measure page load time for the top 20 Alexa websites via SPDY
and H1 proxies in 3G. They find that SPDY performs poorly in mobile networks since
TCP interprets cellular losses and jitter as congestion, causing unnecessary backoffs.
Since SPDY uses fewer TCP connections than H1, its performance suffers more.

Xiao et al. [23] introduce new measurement techniques to provide a more robust
characterization of SPDY. They show that, in absence of browser dependencies and
computation, SPDY tends to outperform H1; however, the gains are reduced when de-
pendencies and computation are factored back in (with the caveat that server push can
squeeze additional performance gains from SPDY).

De Saxcè et al. extend this analysis to H2 [17]. Using the top 20 Alexa websites,
they investigate H2 performance under various network delay, bandwidth, and loss us-
ing an open-source client and server. Their results confirm those for SPDY in [23].
Unfortunately, by serving clones of the websites from their own test server, they ignore
the impact of important real-world website properties like domain sharding.

Our aim is to take the next step in characterizing H2 performance. Our measure-
ments improve prior art in five ways: (1) we target more websites (1000s as opposed to
10s or 100s); (2) we measure real servers from real networks (wired, 3G, and 4G); (3)
we test real websites, not clones or synthetic traces; (4) we build on Chrome reliabil-
ity to develop an accurate performance estimation tool; (5) we also study adoption and
website structure trends.

3 Measurement Platform

This section describes our measurement platform. We start by summarizing a set of
tools we have deployed, and then explain how we use them together to monitor H2
deployment and performance.
prober is a lightweight bash script that identifies which application protocols a website
announces. Prober uses OpenSSL [14] to attempt ALPN and NPN negotiations and
returns either the list of protocols announced by the server or failure. Next, prober
checks for H2 cleartext (H2C) support—that is, H2 without TLS—by including an UP-
GRADE header in an H1 request.



H2-lite is a lightweight client that attempts to download only the root object of a website
using H2. H2-lite uses the Node.js [2] H2 library [9]. H2-lite follows HTTP redi-
rects to obtain the root object and reports any protocol errors encountered along the way.
H2-lite also identifies sites with certificate problems, e.g., self- signed certificates,
mismatches between hostname and common name, or expired/revoked certificates.
chrome-loader is a Python tool that loads pages using Chrome. It extracts object sizes
and timing information using chrome-har-capturer [6]. Chrome-loader can instruct
Chrome to use either H1 or SPDY/H2 (Chrome does not allow separate control over
SPDY and H2). However, using Chrome’s remote debugging protocol, chrome-loader
reports which protocol was used to retrieve each individual object in a page.

We now describe our measurement platform in detail. It consists of a single master
and many workers; the master issues crawl requests to the workers, which are deployed
on both PlanetLab [3] and machines in our labs (U.S. and Spain). We use PlanetLab for
simple measurements at a large scale and our lab machines for more complex measure-
ments at a smaller scale and where machine reliability is important. The master con-
stantly monitors PlanetLab to identify a pool of candidate machines (at least 500 MB
of free memory, CPU load under 30%, and no network connectivity issues). We collect
measurements in three phases:
Phase I: It discovers, daily, which protocols are supported by the top 1 million Alexa
websites. First, the master launches an instance of the prober on each PlanetLab
worker. The worker is then assigned a unique 100-website list to probe. When it fin-
ishes, it reports results to the master and obtains a new list if one is available. This ap-
proach ensures load balancing among heterogeneous workers allowing faster workers
to complete more tasks. To deal with slow workers, the master re-assigns uncompleted
tasks to new workers after a timeout T (set to the average task completion time across
workers). Phase I terminates when the tracker has a complete set of results.
Phase II: It verifies, daily, whether the sites that reported H2 support in Phase I actually
serve content over H2. After Phase I, the master launches several instances of h2-lite
and, as above, it dynamically assigns each 100 sites that reported H2 support in Phase
I. Because the H2 library requires more up-to-date software than is available on Planet-
Lab, we run h2-lite on 4 machines under our control, 2 in Barcelona (Spain) and 2
in Cleveland (U.S.). When Phase II terminates, the master has a list of sites that actually
serve content using H2.
Phase III: It fetches both the H1 and H2 version of websites that serve content via
H2 using multiple network locations and access network types (e.g., fiber and 4G).
The master is responsible for selecting the machines to be used and instructing them
which websites to test. The master uses one of three strategies: (1) regular, where each
network location with fiber access is weekly instructed to test all H2 websites identified
by Phase II; (2) lazy, the same as the regular strategy but a website is tested only if
one of these conditions is met: (a) it is a new website that recently adopted H2, (b) its
content significantly changed from the last time it was tested, or (c) a timeout elapsed
since the last test; (3) mobile, where only mobile-enabled locations are selected, and a
subset of websites are tested based on their Alexa popularity.

To test a website, we fetch it 5 times with H1 and 5 times with either SPDY or H2
(as discussed above, Chrome does not provide fine-grained control between SPDY and
H2). Fetches are run sequentially to limit the impact of network load. While testing a
website, we run a background ping process to collect statistics about network latency
and packet loss. For the mobile strategy, we force Chrome to report a mobile user-agent
to the server, which may respond with a mobile version of the website. Before the five



trials, an initial “primer” load is performed. This primer has a double purpose: (1) test
whether a website significantly changed its content since the last time it was tested
(used by the lazy strategy), and (2) ensure that DNS entries are cached at the ISP’s
DNS resolver before the first real trial (to prevent a cache miss on the first trial from
skewing the load time results). Local content and DNS caches are disabled and each
request carries a cache-control header instructing network caches not to respond.

We currently have Phase III workers in three different locations: Barcelona (Spain),
Cleveland (USA), and Pittsburgh (USA). Each location consists of three machines with
fiber connectivity. In addition, machines in Spain are connected to Android phones via
USB tethering; each phone is configured to use either 3G or 4G. Because each SIM card
has a 4 GB monthly limit, a maximum of about 200 websites—5 trials per protocol plus
the primer—can be tested before exhausting the available plan. We ran Phase III with
the regular strategy from November 2014 to September 2015, when the widespread
deployment of H2 made it impossible to run Phase III weekly without additional ma-
chines. Thus, we switched to the lazy strategy. Finally, we ran Phase III with the mobile
strategy only once in October 2015. We plan to run the mobile strategy once per month,
as constrained by the mobile data plan.

4 Results

This section presents and analyzes the data collected using our measurement platform
between November 10th, 2014 and October 16th, 2015. We invite the reader to access
fresh data and analysis at [1].

4.1 Adoption

We recorded protocol support announced via ALPN/NPN for 11 months, during which
time we saw support for 44 protocols (34 of which were versions of SPDY). Table 1
summarizes the evolution over time of the three most popular protocols, namely H1,
SPDY 3.1, and H2; in addition, we also report NPN, ALPN, and H2C support when
available. Each percentage is the maximum observed during the month; note that an-
nounce rates for H1 are underestimated since H1 sites are not required to use NPN/ALPN.
The table also reports the total number of probed sites. From November 2014 to August
2015, we use the Alexa Top 1 Million list fetched on November 10th, 2014. Beginning
in September 2015, we merge the current Alexa list with our own each day, constantly
expanding the pool of sites we query (1.8 M as of October 16th 2015).

Overview From November 2014 through August 2015, Table 1 shows mostly constant
H1 and SPDY announce rates, with the exception of a large drop in May 2015 (2.2
and 2.5 percentage points respectively.2) By contrast, the H2 announce rate grows by
50%—from 1.4% to 2.2%—with most of the growth occurring after May 2015, when
H2 was standardized. As we start expanding the pool of sites that we probe (September
2015), H1 and SPDY announce rates grow slowly (SPDY grows from 5.1% in July to
5.7% in October), while H2 announce rates grow more quickly (2.2% in July to 3.7%
in October). Interestingly, we measured a 0.1% drop in SPDY in October (about 2,000
sites) and a 0.6% increase in H2 (about 10,000 sites). If the trend continues, H2 support
will overtake SPDY in the near future.

2 We did not find a public explanation of this drop, but we verified it was not measurement error.



Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

HTTP/1.1 9.8% 10.2% 10.5% 10.8% 11.2% 11.3% 9.1% 9.7% 10.8% 11.4% 12.1% 12.1%
SPDY/3.1 5.8% 5.9% 6.0% 6.2% 6.3% 6.3% 3.7% 4.1% 5.1% 5.6% 5.8% 5.7%

HTTP/2 1.4% 1.4% 1.3% 1.3% 1.3% 1.3% 1.2% 1.4% 2.2% 2.7% 3.0% 3.6%

NPN 9.8% 10.2% 10.5% 10.8% 11.2% 11.3% 9.1% 9.7% 10.8% 11.4% 12.1% 12.1%
ALPN – – – – – – – – – – 5.1% 5.1%

H2C 0% 0% 0% 0% 0% 0.006% 0.06% 0.2% 1.04% 1.20% 1.38% 1.37%

Tot. sites 1M 1M 1M 1M 1M 1M 1M 1M 1M 1.4M 1.7M 1.8M
Table 1. Protocol support from Nov. 2014–Oct. 2015 as percentage of top 1 million Alexa sites.

NPN, ALPN, and H2C As of October 2015, 50% of the sites supporting NPN also
support ALPN. We added ALPN support to our measurement platform in September
2015; previous manual ALPN tests showed less than 0.5% adoption. Although not
shown in the table, as of October 2015 there are already 1,200 websites supporting
ALPN but not NPN, 20% more than in September. H2C announcement also grows
quickly, reaching 1.37% in October 2015 (about 22,000 sites). However, our UPGRADE
header tests found only 20–30 sites that actually support H2C.

H2 Adoption We now examine H2 adoption in detail. Figure 1(a) shows the evolution
of the number of websites that (1) announce H2 support (H2-announce), (2) respond
using H2, even just to return an error page or redirect (H2-partial), and (3) actually
serve page content with H2 (H2-true, cf. Section 3).

Figure 1(a) shows the substantial growth of H2 adoption after its standardization
(May 2015). The Figure also shows a large difference between “announced” (H2-
announce) and “actual” H2 support (H2-partial and H2-true). However, while be-
tween November 2014 and May 2015 only 5% of the websites announcing H2 support
actually responded using H2 (H2-partial), this increases to 55% as of October 2015.
We also see that before May 2015, most websites serving content with H2 are well con-
figured and properly working (i.e., the gap between H2-partial and H2-true is small).
After May, the gap widens considerably: most new websites supporting H2 show some
misconfiguration, like redirecting to an error page. This trend continues until October
2015 when the gap between H2-partial and H2-true is suddenly reduced.

Web Server Implementations In order to further understand the different levels of H2
support noted above, Figure 1(b) plots the popularity of the web server implementa-
tions powering the H2-true websites. Note that the resolution of this data is weekly
until September 2015 and daily thereafter. For visibility, Figure 1(b) shows only the
6 most popular web-server implementations (out of the 53 encountered). Figure 1(b)
shows that, between October 2014 and May 2015, most H2-true websites are powered
by Google web-servers (google frontend, gws, gse and sffe). Then, in May 2015, two
new H2 implementations debut: LiteSpeed and NGINX. Their adoption rates are very
different; while LiteSpeed websites are quickly updated—LiteSpeed usage grows from
10 websites to 2,000 within two months—NGINX websites upgrade more slowly. The
combination of fast adoption and the fact that most LiteSpeed websites are H2-partial
and not H2-true suggests that LiteSpeed is used for virtual hosting more than NGINX.
Despite lower overall numbers, NGINX currently powers more than 7,000 H2-true
websites (71.7% of all H2-true websites) compared to LiteSpeed’s 1,300.
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Fig. 1. H2 adoption over time. November 2014 – October 2015.

Notable Events Figure 1(a) shows a few events that are worth noting. First, the number
of servers supporting H2 drastically drops over a period of four days (December 14th-
18th). This is because Google, the primary adopter of H2 at that time, disabled H2
support on their servers (cf. Figure 1(b)) due to an issue with SDCH compressed content
in Chromium.3 It takes a month for the problem to be fixed, and H2 support is re-
enabled again over four days (January 11th-15th), likely reflecting a specific roll-out
policy for server configuration changes. The next interesting event happens between
May and June 2015, when the number of H2-partial websites—though they are mostly
error pages—doubles from 600 to 1,200. This spike is due to Hawk Host, a virtual
web hosting provider, updating its servers with the latest version of LiteSpeed, which
supports H2 (cf. Figure 1(b)).4 Figure 1(a) also shows a sudden increase in H2 support
on October 3rd, caused by NGINX’s footprint growing 40% (from 25,000 to 35,000
websites) thanks to WordPress updating to the latest NGINX release.5 Finally, note that
the spikes in August and September are due to the extension of the pool of websites we
query (cf. Table 1).
Takeaway: The H2 adoption trend reflects the broader Internet ecosystem, where most
websites do not control their own technology stacks. There are a few big players re-
sponsible for the spread of new technologies; the average website owners might not
even know they are serving content over H2.

4.2 Website Structure

Number of objects Modern web pages are usually composed of several embedded
objects, including images, JavaScripts, and style sheets. During our 11-month measure-
ment campaign, we find no indication of a difference in the number of objects between
pages served with H1 and H2 (cf. Figure 2(a)). To verify this quantitatively, we com-
pute the cosine similarity of the object counts for H1 and H2 every week and find values
ranging from 0.96 to 0.98. Thus, at a macroscopic level, there is no difference in the
content composition between the two protocols. Fig. 2(a) also shows that from Novem-
ber 2014 to May 2015, pages served with H2 are mostly small pages, i.e., 50% have

3 https://lists.w3.org/Archives/Public/ietf- http-wg/2014OctDec/0960.html
4 http://blog.hawkhost.com/2015/07/13/http2-more-now- available-at-hawk-host-via- litespeed-5-0/
5 NGINX 1.9.5 (September 22nd) was sponsored by Automattic, the creators of WordPress. http://nginx.org/en/CHANGES
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Fig. 2. Content analysis and delivery (Cleveland).

10 objects or less. After May 2015, more complex websites started to support H2; for
example, in October 2015, 50% of websites have about 60 objects, which is in line with
the average number of objects per webpage reported in [21].

The objects embedded within a web page often reside on another webserver and
the browser must open new TCP connections independent of the application protocol
in use. In addition, the browser must renegotiate which application protocol to use for
each new TCP connection. It follows that even if a website supports H2, it is possible
that only a fraction of its objects are delivered using H2. Although not shown due to
space limitations, we find that half of the websites actually serve about 50% of their
content using H2. Only 10% of the websites serve 100% of their objects using H2; these
websites contain fewer objects and have an overall smaller size—400 KB on average
compared to 1.5MB for all websites.

Takeaway: There is no significant difference in object composition between the H1 and
H2 versions of a website. Also, 90% of the websites still leverage H1 to serve a portion
of their content.

Number of connections We now investigate the number of TCP connections used to
load a website using H1 versus H2. Motivated by the previous result, we differentiate
websites based on how many of their objects are served with H2. Figure 2(b) shows
the Cumulative Distribution Function (CDF) of the number of TCP connections per
website as a function of th, or the fraction of the webpage’s objects served with H2.
In case of H1 we show a single curve as objects are always served with H1. The data
for this plot was collected from our machines in Cleveland between October 6th-13th
(8,492 distinct websites).

We first focus on the H1 curve and the H2 curve obtained with th = 0, where no
websites are filtered. On average, H2 requires half as many TCP connections as H1;
a few websites can even be served via a single TCP connection, but there are extreme
cases where up to 100 connections might be required. As th increases, the required
number of TCP connections decreases; this is intuitive since H1 and H2 cannot share
the same TCP connection. For th = 1, all objects are served with H2, up to 40% of
the websites only need a single TCP connection indicating that the websites content
is hosted entirely on a single webserver; still, the remaining 60% need up to 20 TCP
connections. This is a consequence of the way web content is organized today, where
objects might reside on 3rd party domains. We further analyze this phenomenon next.
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Fig. 3. Content analysis and delivery.

Takeaway: H2 does not currently succeed in serving a page using a single TCP con-
nection: 50% (4,300) of the websites using H2 today use at least 20 TCP connections.

Page composition Websites today try to optimize delivery using several techniques
like sharding, inlining, spriting and concatenation (cf. Section 1 and [18]). We see no
straightforward way to measure spriting and concatenation, so in this work we only
focus on sharding and inlining. Figure 3 summarizes the results of this analysis.

Focusing first on domain sharding, Figure 3(a) reports the distribution of the number
of unique domains per website. The distributions for H1 and H2 are essentially the same
with a median of 18 domains per page each, and outliers of ∼250 unique domains on
a single page. This finding is related to the number of TCP connections opened per
page (cf. Figure 2(b)). While H2 allows multiplexing object requests over a single TCP
connection, most web pages embed objects from many different domains, thus forcing
the use of a larger number of TCP connections. There are two plausible explanations for
this: (1) web masters are deliberately sharding, and (2) it is just a natural consequence
of deep linking (as opposed to re- hosting) practices that are common across the web.

Next, Figure 3(b) plots the distribution of the average number of objects per domain
per website. We again find that there is no meaningful difference between H1 and H2:
most domains are used for relatively few objects (median = {3.5, 3.5}, mean = {5.5,
5.4}, top 10th-percentile of {9.7, 9.6}, and a max of {179, 171} for H1 and H2 respec-
tively). This is further evidence of sharding-esque behavior since web page objects are
dispersed over a large number of domains.

Finally, Figure 3(c) plots the size of inlined CSS/JS relative to the total size of
the main HTML for each website; i.e., what fraction of the total bytes making up an
HTML document are from inlined CSS/JS. We find that there is a long tail where inlined
CSS/JS makes up a considerable portion of the page: about 25% of websites’ page
contents is more than 25% inlined CSS/JS. With H1, inlining can help ensure the page
loads faster by not requiring an extra TCP connection; however this is no longer an
issue in H2, so these websites are potentially suffering a performance hit since inlined
content cannot be cached separately by the client.

Takeaway: Most websites exhibit H1 practices like domain sharding and inlining in H2.
Sharding causes H2 websites to use more TCP connections than necessary and inlining
may reduce the utility of caching.
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4.3 Performance

Comparison to H1 First, we investigate H2 performance by comparing a website’s
page load time (PLT) when using H1 and H2. There is no standardized definition of
PLT; from a user perspective, it is the time from when the user enters a URL in the
browser to when the page is displayed. Similar to other studies [7], we approximate PLT
as the time from when Chrome starts fetching the page to the firing of the JavaScript
“onLoad” event; this event occurs once the page’s embedded resources have been down-
loaded, but possibly before all objects loaded via scripts are downloaded. We define
“H2 speedup” as the difference in PLT between the H1 and H2 versions of a website;
speedup values > 0 indicate websites that are delivered faster with H2 than H1.

For this analysis, we leverage the data collected from multiple locations and access
networks in the second week of October. From fiber connections, we target 8,492 web-
sites with verified H2 support (cf. Fig. 1(a)) using three network locations: Barcelona
(Spain), Pittsburgh (U.S.), and Cleveland (U.S.). Experiments using 3G/4G connections
are performed at a single location (Barcelona) and we restrict the list to the 200 most
popular websites, as ranked by Alexa, that also support H2.

Figure 4(a) shows the CDF of H2 speedup at each location, and access network. We
start by focusing on fiber access; the figure shows positive speedup values for 75-85%
of the websites depending upon network location. While Pittsburgh and Cleveland show
very similar H2 speedup values (decreasing the likelihood of this being an anomalous
observation), speedup values measured from Barcelona are 10-15% higher. Our latency
estimations coupled with the measurements (cf. Section 3) show that, on average, the
Barcelona experiments suffer an additional 14 ms in RTT since most target websites are
located in the U.S. Likely, the longer RTT negatively impacts H1 more than H2 due to
the handshakes required by the additional TCP connections in H1 (cf. Section 4.2).

Next, we focus on a single location (Barcelona) and different network access, namely
fiber, 4G, and 3G ordered by decreasing “speed.” Figure 4(a) shows that as the access
speed decreases, the benefit of adopting H2 also increases: the average speedup grows
from 560 ms on fiber, up to respectively 800 ms on 4G and 1.6 seconds on 3G. Latency
measurements show that the median RTT more than doubles from fiber to 4G (46 up
to 105 ms), and it grows by an additional 10% on 3G (117 ms). This additional latency
again negatively impacts H1 more than H2. Figure 4(a) also shows that an additional
10% of websites see a performance degradation, negative speedup, over 3G compared
with 4G and fiber. This results is due to the fact that for 3G and 4G we target Alexa’s



200 most popular websites that also support H2, which tend to be landing pages and are
simpler than the average website. In this case, the application protocol used has little
impact as PLT is dominated by RTT.
Takeaway: 80% of the websites adopting H2 see an average page load time reduction
of 500 ms (fiber) and 1.6 seconds (3G). The remaining 20% see an average page load
time increase of 1 second (fiber) and 1.4 seconds (3G).

Partial adoption We now analyze the impact of the fraction of the webpage served
with H2 (th) on H2 speedup (cf. Fig. 2(a)). For this analysis, we focus on a single
location and access network (Cleveland, fiber) since no significant differences arise
across locations and access types. We find that for th < 1 there is no statistically
significant difference between the curves6 and most websites benefit from even partial
H2 adoption. On average, the speedup reduces by 10% when we consider th = 1 which
seems counter-intuitive. This again related to a simpler object composition of these
websites for which H2 benefits result marginal.
Takeaway: Even partial H2 adoption improves PLT. In fact, the decrease in PLT for
websites using both H1 and H2 is often greater than that for pure H2 websites (though
this is likely an artifact of the small subset of websites that are fully H2, which tend to
be very simple).

4.4 Discussion

In December 2015, a notable event shook our measurement infrastructure [1]. Cloud-
Flare, a global CDN and DNS provider, enabled H2 for all its free customers.7 This
resulted in an additional 80,000 websites announcing H2 support (H2-announce) of
which about 60,000 exhibit true support (H2-true). Note that CloudFlare uses an in-
house version of NGINX, reported as cloudflare-nginx, which rapidly became the most
popular web server implementation supporting H2.

Such rapid growth in H2-true websites affected Phase III’s feasibility: at such scale,
even the lazy strategy would require over a month to complete. Considering even further
growth moving forward, we can either divide Phase III among our vantage points or
sample the websites to test. We have temporarily suspended Phase III and are rethinking
this component of our infrastructure. In addition, we are currently collaborating directly
with CloudFlare to collect both server and client side measurements. We will soon
report the outcome of an improved Phase III on [1] as well as in an extension of this
work.

5 Conclusion

This work presents a measurement platform to monitor both adoption and performance
of H2, the recently standardized update of H1. On a daily basis, our platform checks the
top 1 million Alexa websites for which protocols they announce support. Next, it checks
which websites actually support H2, and, once a week, tests their content structure and
performance from multiple network locations. Once a month, a popular subset of these
websites is also tested from 3G and 4G networks. Results are updated daily at [1]. In

6 Two sample Kolmogorov-Smirnov tests provided no support to reject the null hypothesis.
7 https://www.cloudflare.com/http2/



this paper, we report our initial findings from an 11 month measurement campaign,
from November 2014 until October 2015. We find 68,000 websites already announcing
H2 support, out of which 10,000 serve actual content, i.e., not an error page or redirect.
An in-depth analysis of the content being served reveals that classic H1 hacks are still
present with H2. In performance, we find that 80% of the websites load faster with H2
than H1. The average decrease in page load time is 300-560 ms from multiple locations
with a fiber access, and up to 1.6 seconds from a European 3G connection.
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