And Then There Were More:

Secure Communication for More Than Two Parties David Naylor Carnegie Mellon

Richard Li University of Utah

Christos Gkantsidis Microsoft Research

Thomas Karagiannis Microsoft Research

> Peter Steenkiste Carnegie Mellon

Carnegie Mellon University

Microsoft

In most networks, **# middleboxes ≈ # routers**

Web Cache Compression Proxy Intrusion Detection System Virus Scanner Parental Filter Load Balancer

[Making Middleboxes Someone Else's Problem. SIGCOMM '12]

In most networks, **# middleboxes ≈ # routers**

Encryption blinds middleboxes.

Encryption blinds middleboxes.

Goal: Encryption + Middleboxes

Goal: Encryption + Middleboxes

Design Space

For secure, multi-entity communication protocols

mbTLS

A deployable protocol for outsourced middleboxes.

Authentication

Extend TLS Security Properties

Other Properties

Granularity of Data Access

Definition of "Party"

Definition of "Identity"

1 Extend TLS Security Properties

2 New Security Properties

Other Properties

Granularity of Data Access

Definition of "Party"

Definition of "Identity"

Path Integrity

Data Change Secrecy

Authorization

1 Extend TLS Security Properties

Granularity of Data Access

Definition of "Party"

VS VS

Definition of "Identity"

Path Integrity

Data Change Secrecy

Authorization

Properties

Other

Legacy Endpoints

In-Band Discovery

Computation

There is no one-size-fits-all solution.

There is no one-size-fits-all solution.

Supporting one property often precludes another.

Supporting one property often precludes another.

TLS interception with custom root certificates

Supports two legacy endpoints

Prevents

endpoint authentication (owner or code)

Supporting one property often precludes another.

Supporting one property often precludes another.

BlindBox [SIGCOMM '15]

Supports functional crypto (minimal data access)

Prevents

arbitrary computation

There is no one-size-fits-all solution.

Supporting one property often precludes another.

There is no one-size-fits-all solution.

Supporting one property often precludes another.

Goal: Encryption + Middleboxes

Design Space

For secure, multi-entity communication protocols

mbTLS

A deployable protocol for outsourced middleboxes.

Protection for outsourced middleboxes

Protect session data from middlebox infrastructure (in addition to traditional network attackers)

Protection for outsourced middleboxes

Protect session data from middlebox infrastructure (in addition to traditional network attackers)

Protection for outsourced middleboxes 2 Protect session data from middlebox infrastructure (in addition to traditional network attackers) **Middlebox Software R/W** access Client **Middlebox Infrastructure** Server **R/W** access No access **R/W** access **Everyone Else** No access

Protection for outsourced middleboxes

Protect session data from middlebox infrastructure (in addition to traditional network attackers)

A first approach: pass primary session key over secondary TLS session

An aside: Intel SGX

1 Secure Execution Environment Program code, data, and stack encrypted.

2 **Remote Attestation** Prove to remote party that 1 is working.

A first approach: pass primary session key over secondary TLS session

mbTLS protects session data and keys using SGX

On-path middleboxes can be discovered "on-the-fly"

Per-hop keys provide path integrity and data change secrecy

Evaluation

What overheads does mbTLS introduce?

From SGX? From crypto?

Is mbTLS immediately deployable?

Will existing network devices drop mbTLS handshake messages?

SGX doesn't have much impact on I/O+compute-intensive workloads

mbTLS adds some handshake CPU overhead on the server

mbTLS' handshake protocol changes are deployable today

No handshakes were dropped.

And Then There Were More:

Secure Communication for More Than Two Parties David Naylor Carnegie Mellon

Richard Li University of Utah

Christos Gkantsidis Microsoft Research

Thomas Karagiannis Microsoft Research

> Peter Steenkiste Carnegie Mellon

Carnegie Mellon University

Microsoft