
 Encrypted Web Traffic
We studied the amount of Web traffic
using HTTPS in a residential ISP in Europe.

mcTLS:
Enabling Secure In-Network Functionality in TLS

David Naylor Kyle Schomp Matteo Varvello Ilias Leontiadis Jeremy Blackburn
Diego Lopez Dina Papagiannaki Pablo Rodriguez Rodriguez Peter Steenkiste

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Apr
2012

Jul
2012

Oct
2012

Jan
2013

Apr
2013

Jul
2013

Oct
2013

Jan
2014

Apr
2014

Jul
2014

F
ra

ct
.

o
f

H
T

T
P

S

Volume
Flows

Company Firewall
foo.com

3 Client accepts fake cert
because it’s signed by
company’s root cert

4 Firewall opens separate
TLS connection to foo.com

1 Company installs
root cert on client

Company

2 Firewall fabricates a
cert for foo.com

foo.com

Ctxts: 1
Mbox: 0

Ctxts: 4
Mbox: 0

Ctxts: 8
Mbox: 0

Ctxts: 4
Mbox: 1

Ctxts: 4
Mbox: 2

0

1

2

3

4

5

6

7

8

Size
(kB)

mcTLS
TLS

0 2 4 6 8 10 12 14 16
Number of Contexts

0

100

200

300

400

500

600

Connections
per Second

mcTLS
TLS

0 2 4 6 8 10 12 14 16
Number of Contexts

0

50

100

150

200

250

300

350

400

Time
to

First
Byte
(ms)

mcTLS
TLS
TCP

MOTIVATION Encryption is blinding middleboxes.

MAIN IDEA Encryption contexts for fine-grained access control.

PERFORMANCE mcTLS adds functionality to TLS. Does it add overhead?

Observation 1
The use of encryption online is

increasing rapidly.

Observation 2
Middleboxes are frequently used to add
functionality or enhance performance.

 Example Application-Layer Middleboxes
Parental filters, virus scanners, and intrusion
detection systems add security functionality. Web
proxies decrease page load time by caching and
decrease data usage by compressing objects.

Can we just use TLS?
Using middleboxes with TLS is broken:

Why access control?
Most middleboxes don’t need full

read/write access to all data.

Parental Filter
Packet Pacer

IDS
WAN Optimizer

Caching
Compression

HTTP Request HTTP Response
Headers Body Headers Body

read only read/write

What are encryption contexts? How do they work?
An encryption context is a tag associated with
a set of middlebox permissions. Applications

specify a context for each piece of data.

“Request
 Headers”

Context 1:

Read Only:

Read/Write:

“Request
 	 Body”

Context 2:

Read Only:

Read/Write:

“Respnose
 Headers”

Context 3:

Read Only:

Read/Write:

“Respnose
 Body”

Context 4:

Read Only:

Read/Write:

send(data, context)

Each context has two symmetric keys:

WRITE KEY

READ KEY Given to each middlebox with read or write
access to that context. Used to encrypt/decrypt
and to generate a MAC for detecting third
party changes.

Given to each middlebox with write access
to that context. Used to generate a MAC for
detecting reader changes.

 mcTLS Record
Each record in
mcTLS carries
three MACs.
Read and write
keys are per-
context; the
endpoint key is
shared accross
all contexts.

Readers, Writers,
& Endpoints
check to detect

3rd party changes

Writers &
Endpoints

check to detect
reader changes

Endpoints
check to detect

writer changes

DATA MAC MAC MAC

READ KEY WRITE KEY ENDPOINT KEY
MACencrypt MAC MAC

 Handshake Size
mcTLS introduces
minimal data
overhead.
Handshake size
increases with the
number of contexts
and middleboxes.

 Server Load
mcTLS introduces
moderate CPU
load.
The server can
opt out of much
of this extra
computation.

 Handshake Time
mcTLS introduces
no time overhead.
Just like TLS, the
mcTLS handshake
is 2 RTTs.

Implementation, documentation, and research paper available online: mctls.org

Carnegie Mellon University
Case Western Reserve University
Telefónica Research

WWW

