
 Encrypted Web Traffic
We studied the amount of Web traffic 
using HTTPS in a residential ISP in Europe.
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MOTIVATION Encryption is blinding middleboxes.

MAIN IDEA Encryption contexts for fine-grained access control.

PERFORMANCE mcTLS adds functionality to TLS. Does it add overhead?

Observation 1
The use of encryption online is 

increasing rapidly.

Observation 2
Middleboxes are frequently used to add 
functionality or enhance performance.

 Example Application-Layer Middleboxes
Parental filters, virus scanners, and intrusion 
detection systems add security functionality. Web 
proxies decrease page load time by caching and 
decrease data usage by compressing objects.

Can we just use TLS?
Using middleboxes with TLS is broken:

Why access control?
Most middleboxes don’t need full 

read/write access to all data.

Parental Filter
Packet Pacer

IDS
WAN Optimizer

Caching
Compression

HTTP Request HTTP Response
Headers Body Headers Body

read only read/write

What are encryption contexts? How do they work?
An encryption context is a tag associated with 
a set of middlebox permissions. Applications 

specify a context for each piece of data.

“Request 
 Headers”

Context 1:

Read Only:

Read/Write:

“Request 
 	 Body”

Context 2:

Read Only:

Read/Write:

“Respnose 
 Headers”

Context 3:

Read Only:

Read/Write:

“Respnose 
   Body”

Context 4:

Read Only:

Read/Write:

send(data, context)

Each context has two symmetric keys:

WRITE KEY

READ KEY Given to each middlebox with read or write 
access to that context. Used to encrypt/decrypt 
and to generate a MAC for detecting third 
party changes.

Given to each middlebox with write access 
to that context. Used to generate a MAC for 
detecting reader changes.

 mcTLS Record
Each record in 
mcTLS carries 
three MACs.
Read and write 
keys are per-
context; the 
endpoint key is 
shared accross 
all contexts.

Readers, Writers,
& Endpoints
check to detect

3rd party changes

Writers &
Endpoints

check to detect
reader changes

Endpoints
check to detect

writer changes

DATA MAC MAC MAC

READ KEY WRITE KEY ENDPOINT KEY
MACencrypt MAC MAC

 Handshake Size
mcTLS introduces 
minimal data 
overhead.
Handshake size 
increases with the 
number of contexts 
and middleboxes.

 Server Load
mcTLS introduces 
moderate CPU 
load.
The server can 
opt out of much 
of this extra 
computation.

 Handshake Time
mcTLS introduces 
no time overhead.
Just like TLS, the 
mcTLS handshake 
is 2 RTTs.

Implementation, documentation, and research paper available online: mctls.org
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