David Naylor

Kyle Schomp
I I I CT I_S : Matteo Varvello

: llias Leontiadis
enablmg Jeremy Blackburn

secure in'netWOrk Diego Lopez

fUﬂCtiOna\ity Dina Papagiannaki
Pablo Rodriguez

in TLS Rodriguez

Peter Steenkiste

Carnegie st 7— A
Mellon \%STERN é’i ;’7
University RESERVE e/ lm

Residential ISP, Europe
O R R

500 I SO —
40* """""""" """""""" """

% HTTPS 30

20}

10

I\giar Dec Sép thn
2012 2012 2013 2014

OBSERVATION 1:
Use of Encryption is Increasing

~
-

CACHING COMPRESSION

O. mm

PARENTAL FILTER VIRUS SCANNER PACKET PACING

OBSERVATION 2:
In-Network Functionality is Widespread

GOAL:

Encryption

&

In-Network
Functionality

Value-Added Services
Opt-in services that benefit enc
Users.

Administrator-Mandated
Help the company/network; for
users, just a fact of lite.

Unauthorized
Not necessary for network & not
beneficial Tor user,

Value-Added Services
Opt-in services that benefit enc
Users.

Administrator-Mandated
Help the company/network; for
users, just a fact of lite.

GOAL:

Encryption

&

In-Network
Functionality

mcTLS

Encryption

&

In-Network
Functionality

O TLS + Middleboxes

_mcTls O mcTLS Design Ideas

Encryption

&
In-Network :
Functionslity (O mcTLS Handshake

O Performance Evaluation

_mcTls O mcTLS Design Ideas

Encryption

&
In-Network :
Functionslity (O mcTLS Handshake

O Performance Evaluation

TLS

CONSISTS OF:
Handshake Record
Protocol & Protocol
for session setup for data transfer

AND GIVES US THREE SECURITY PROPERTIES:

D O O

Entity Payload Payload
Authentication Secrecy Integrity

TLS + middleboxes is broken

Company installs Firewall fabricates a
root cert on client cert for foo.com

Company
G

Company Firewall
foo.com

@ Client accepts fake cert

because it's signed by (@) Firewall opens separate
company'’s root cert TLS connection to foo.com

TLS was designed for 2 parties

@ No mechanism to

authenticate middleboxes.

@ Client has no security

guarantees past middlebox.

@ Middleboxes have full

read/write access.

_mcTls O mcTLS Design Ideas

Encryption

&
In-Network :
Functionslity (O mcTLS Handshake

O Performance Evaluation

? TLS + Middleboxes

mcTLS
Encryption

&
In-Network :
Functionslity (O mcTLS Handshake

O Performance Evaluation

Design requirements for mcTLS

MAINTAIN TLS SECURITY PROPERTIES:

O O (3

Entity Payload Payload
Authentication Secrecy Integrity
PLUS TWO NEW ONES:
Visibility Least

& Control Privilege

Design requirements for mcTLS

MAINTAIN TLS SECURITY PROPERTIES:

O () (3

Entity Payload Payload
Authentication Secrecy Integrity
PLUS TWO NEW ONES:
Visibility Least

& Control Privilege

Most middleboxes do not need
read/write access to all data

Parental Filter
Packet Pacer
IDS

WAN Optimizer
Caching
Compression

HTTP Request | HTTP Response
Headers Body | Headers Body

%

O
O
® /O O| O

|

® o/ O O

] ™

Access
all data

o = read only

e = read/write

Write
access

|dea #1: Encryption Contexts

(for access control)

send(data, context)

o - - - o

. Context 1: v { Context2: i Context3: i 1 Context4:

| “Request || “Request ii“Response | “Response |
Headers” :i Body” i Headers” :: Body”
Read-Only: ' Read-Only: Read-Only: ' Read-Only:
Read/Write: Read/Write: Read/Write: Read/Write:

__

|dea #1: Encryption Contexts

(for access control)

TLS uses one key forencryption and MAC:

K

encrypt

|dea #1: Encryption Contexts

(for access control)

MCTLS uses three keys to separate read-only and read/write access:

K

K K

readers writers endpoints

encrypt

Readers, Writers, Writers &

& Endpoints Endpoints
check to detect check to detect
3rd party changes reader changes

Endpoints

check to detect
writer changes

|dea #1: Encryption Contexts

(for access control)

Each context has a read key and a write key:

Kreaders Kriters endpom ts Kreaders ~ Kuriters endpom ts
" Context1: " Context2:
. “Request | . “Request
Headers” ! . Body”
Read: (! Read: (

Encryption contexts example

o - - -

. Context1: {! Context2: :! Context3: 1 i Context 4:
. “Request !i “Request i;“Response ' “Response Endpoints
Headers” i; Body” 5; Headers” :i Body”

!

[Read (:}::zx] Read: (:}::r> | Read: (:):cz> ' Read: (:):::>:
Wi erte ‘n iWrite: @nan

151 (K

Ty

Design requirements for mcTLS

MAINTAIN TLS SECURITY PROPERTIES:

O () (3

Entity Payload Payload
Authentication Secrecy Integrity
PLUS TWO NEW ONES:
@ oler
Visibility Least | Encryption
Contexts

& Control Privilege *

Design requirements for mcTLS

MAINTAIN TLS SECURITY PROPERTIES:

O () (3

Entity Payload Payload
Authentication Secrecy Integrity
PLUS TWO NEW ONES:
@ oler
Visibility Least | Encryption
Contexts

& Control Privilege *

ldea #1: Contributory Context Keys

(for endpoint agreement)

Client and server generate part of each context key:

CLIENT MIDDLEBOX SERVER

\7///.«///443 : Yo,

)
Middlebox only learns
key if client and server
agree on its permissions
\ J

Design requirements for mcTLS

MAINTAIN TLS SECURITY PROPERTIES:

O () (3

Entity Payload Payload
Authentication Secrecy Integrity
PLUS TWO NEW ONES:
Contributory @ @ EMUWF;'@
Context Keys VISIbI|Ity Least ncryption
Contexts

& Control Privilege *

? TLS + Middleboxes

mcTLS
Encryption

&
In-Network :
Functionslity (O mcTLS Handshake

O Performance Evaluation

TLS + Middleboxes

mcTLS mcTLS Design Ideas
Encryption

&

In-Network
Functionality

O Performance Evaluation

Handshake Goals

TLS mcTLS

[Q Authenticate server}
[@ Authenticate middlebox}

[0 Authenticate server}

[@ Establish session key} [0 Distribute context keys}

CLIENT

Hello

MIDDLEBOX

List of middleboxes,
contexts, and
permissions

N\

SERVER

CLIENT
[0 Auth server] [0 Auth mbox]

Hello

MIDDLEBOX

Hello + Cert

SERVER

Hello + Cert

Server Key Exchange

Middlebox Key Exchange

Server Hello Done

Middlebox Hello Done

CLIENT
[0 Auth server] [0 Auth mbox]

Hello

MIDDLEBOX

Client Context Secrets

Change Cipher Spec
Finished |—

Hello + Cert

Client Key Exchange | «—

Middlebox Key Exchange

Middlebox Hello Done

I
—

SERVER

Hello + Cert

Server Key Exchange

Server Hello Done

CLIENT MIDDLEBOX SERVER
[0 Auth server] [0 Auth mbox]

Client Key Exchange

Client Context Secrets

Change Cipher Spec
Finished

CLIENT
[0 Auth server] [0 Auth mbox]

Client Key Exchange

MIDDLEBOX

SERVER

Server Key Exchange

CLIENT
[@ Auth server] [@ Auth mbox]

|<Clie nt-Mbox

MIDDLEBOX

KClie nt-Mbox

SERVER

Hello

Client Key Exchange

Change Cipher Spec
Finished

Hello + Cert

Server Key Exchange

Middlebox Key Exchange

Server Hello Done

CLIENT MIDDLEBOX SERVER
[@ Auth server] [@ Auth mbox]

client secrets client secrets client secrets

Hello
Client Context Secrets
Middlebox
Client Key Exchange Context 2: WEENRENEG
Client Context Secrets
Change Cipher Spec et o
Finished Server
Context2
KEndpoints

CLIENT MIDDLEBOX SERVER
[@ Auth server] [@ Auth mbox]

|<CIie nt-Mbox KClie nt-Mbox KEndpoints

client secrets client secrets client secrets

Hello
— | Hello + Cert
ello 4 Cort Server Keyl Exchange
: ' ——— | Server Hello Done
Client Key Exchange Middlebox Key Exchange

I\/IiddleboleeIIo Done

Client Context Secrets

Change CilpherSpec rommmmmnbooooooo .

FiniShed _____ ':::::::_:::::::;! ______
o I\/IlddleboxKey Exchange !

CLIENT
[@ Auth server] [@ Auth mbox]

|<Clie nt-Mbox

client secrets

MIDDLEBOX

KClie nt-Mbox

client secrets

SERVER
[aAuthenticate middlebox]

client secrets

Hello

Client Key Exchange

Change Cipher Spec
Finished

Hello + Cert

Server Key Exchange

Server Hello Done

CLIENT
[@ Auth server] [@ Auth mbox]

|<Clie nt-Mbox

client secrets

MIDDLEBOX

KClie nt-Mbox |<Serve r-Mbox

client secrets

SERVER
[aAuthenticate middlebox]

|<Server-Mbox KEndpoints

client secrets

Hello

Client Key Exchange

Change Cipher Spec
Finished

————————————————————————————

Hello + Cert

Server Key Exchange

Server Hello Done

CLIENT
[@ Auth server] [@ Auth mbox]

clientsecrets | server secrets

MIDDLEBOX

client secrets | server secrets

SERVER
[aAuthenticate middlebox]

client secrets server secrets

Hello

Client Context Secrets

Change CilpherSpec
Finished

Hello + Cert

Middlebox Kéy Exchange

Client Key Exchange | «—

I\/IiddleboleeIIo Done

— Hello + Cert

Server Key Exchange

Server Hello Done

Server Context Secrets

Change Cilpher Spec
— | Finished

CLIENT
[@ Auth server] [@ Auth mbox]

clientsecrets | server secrets

[@ Compute Context Keys]

MIDDLEBOX

|<Serve r-Mbox

KClie nt-Mbox

client secrets

server secrets

[@ Compute Context Keys]

SERVER
[QAuthenticate middlebox]

client secrets server secrets

[0 Compute Context Keys]

| Change Cipher Spec |
— | Finished

v

For each context:

client read secret IEal server read secret

client random [Es

client write secret IE server write secret
et andom |

d
<

serverrandom

“reader keys"

serverrandom

“writerkeys"

|

PRF > I
PRF > T

TLS + Middleboxes

mcTLS mcTLS Design Ideas
Encryption

&

In-Network
Functionality

O Performance Evaluation

TLS + Middleboxes

_mcTls mcTLS Design Ideas
Encryption

&
In-Network
Functionality mcTLS Handshake

mcTLS adds functionality to TLS.
Does it add overhead?

Data Overhead

context key material + certificates

CPU Overhead

context key generation + key exchange

Time Overhead

handshake duration

McTLS increases handshake size

Size
(kB)

OI—‘NUJ-bLIJ'IQ\I\IQO

B mMcTLS
mam TLS

Ctxts: 1 Ctxts: 4 Ctxts: 8 Ctxts: 4 Ctxts: 4
Mbox: 0 Mbox: 0 Mbox: 0 Mbox: 1 Mbox: 2

mcTLS can increase server load

600,

500

400¢

Connections
per Second 300

200

100

Y2 3 6 8§ 10 12 1z 16
Number of Contexts

MmcTLS does not increase time to
first byte

Time
to
First
Byte
(ms)

400,

| | |
350 G 2, i e S e i s e T : # mcrls
r--1 TLS
300; bl TCP

250

200

100

50t

Y 2 4 6 & 10 12z 14 16
Number of Contexts

TLS + Middleboxes

_mcTls mcTLS Design Ideas
Encryption

&
In-Network
Functionality mcTLS Handshake

TLS + Middleboxes

_mcTls mcTLS Design Ideas
Encryption

&
In-Network
Functionality mcTLS Handshake

Performance Evaluation

crypto details
threat model
using encryption contexts
|ﬂ the Pa pel’ application use cases
detailed performance evaluation
future work

Multi-Context TLS (mcTLS):
Enabling Secure In-Network Functionality in TLS

David Naylor+, Kyle Schomp’, Matteo Varvello?, llias Leontiadis*, Jeremy Blackburn?,
Diego Lopez?, Konstantina Papagiannakit,
Pablo Rodriguez Rodriguez?, and Peter Steenkiste*

*Carnegie Mellon University =~ TCase Western Reserve University fTelefénica Research

ABSTRACT 1. INTRODUCTION

A significant fraction of Internet traffic is now encrypted The increased personalization of Internet services and
and HTTPS will likely be the default in HTTP/2. How- rising concern over users’ privacy on the Internet has
ever, Transport Layer Security (TLS), the standard pro- led to a number of services (e.g., Facebook, Twitter,
tocol for encryption in the Internet, assumes that all and Google) offering access solely over HT'TPS. HTTPS

mctls.org

mctls.org @]

Documentation Download About

Multi-Context TLS (mcTLS)

mCTLS is a secure communication protocol that extends TLS to allow endpoints to incorporate trusted
middleboxes into secure sessions.

No Transparent Middleboxes: Both endpoints explicitly approve each middlebox.

Least Privilege: Middleboxes see only what they need to do their jobs.

Middlebox Authentication: Client and server can verify the identity of each middlebox.

No Custom Root Certificates: Overall security is not undermined by requiring users to install root
certificates.

Check out our SIGCOMM 2015 paper

mcTLS: k

nabling
secure in-network
functionalitv

David Naylor

Kyle Schomp
I I I CT I_S : Matteo Varvello

: llias Leontiadis
enablmg Jeremy Blackburn

secure in'netWOrk Diego Lopez

fUﬂCtiOna\ity Dina Papagiannaki
Pablo Rodriguez

in TLS Rodriguez

Peter Steenkiste

Carnegie st 7— A
Mellon \%STERN é’i ;’7
University RESERVE e/ lm

